
Lamoth: A Message Dissemination Middleware for
MMOGs in the Cloud

Julien Gascon-Samson
School of Computer Science

McGill University
Montreal, Canada

julien.gascon-samson@cs.mcgill.ca

Bettina Kemme
School of Computer Science

McGill University
Montreal, Canada

kemme@cs.mcgill.ca

Jörg Kienzle
School of Computer Science

McGill University
Montreal, Canada

joerg.kienzle@mcgill.ca

Abstract—Provisionning network resources for Massively
Multiplayer Online Games (MMOGs) poses interesting challenges
due to the fact that the load can greatly vary depending on the
time or other in-game factors. In this paper, we propose Lamoth,
a cloud middleware for MMOGs that provides an interface for
in-game message dissemination. Lamoth handles the exchange of
game messages between nodes by making use of an arbitrary
number of off-the-shelve pub/sub servers deployed in the cloud
depending on the game scenario. In order to evaluate our
platform, we implement Lamoth on top of Mammoth, McGill’s
research-oriented MMOG, and conduct extensive experiments by
triggering situations which would cause networks bottlenecks.
Our evaluations show that Lamoth can allow a MMOG to scale
to high numbers of players and can properly handle extremely-
demanding in-game situations if enough resources are provided.

I. INTRODUCTION

Massively Multiplayer Online Games (MMOGs) are a
multi-billion dollar industry and feature thousands of players
participating in shared huge virtual environments. To support
such games, a powerful network infrastructure is needed,
especially regarding the message dissemination service, which
is responsible for delivering messages between the clients and
the server(s). As players are more likely to be playing at certain
time periods, the number of messages to be transmitted is
subject to high variation over time. Also, a game provider
might organize events at specific game locations which may
attract many players in a confined area. In this paper, we argue
that the cloud can be leveraged in the context of MMOGs
to manage large numbers of connected clients under various
scenarios which are likely to put a stress over the network
infrastructure, such as a high volume of players and many
players flocking towards a common location.

We propose Lamoth, a middleware platform used by all
game nodes to route all game messages through a set of
off-the-shelve pub/sub servers deployed in the cloud. In our
implementation, we decided to use Redis, a popular ready-to-
use open-source cloud middleware which provides, amongst
other things, efficient pub/sub capabilities.

II. RELATED WORK

Many approaches have been proposed to deal with server
overloading issues such as sharding, approaches based on
geographical mapping [1] and approaches based on logical
mapping [2]. Some other approaches try to scale using mul-
ticast trees, at the expense of increased latencies [3]. Some

popular approaches nowadays such as OnLive [4] run the
complete game on servers. Players receive a video stream of
the game and send back player input. The downside is that
it requires huge amounts of bandwidth (server-side outgoing
bandwidth and client-side incoming bandwidth). In [5], the
authors describe how they deployed and made use of a pub/sub
infrastructure in the cloud to support FPS games with large
amounts of players. The architecture is however different.

III. BACKGROUND

We conducted extensive experiments with Mammoth,
McGill’s research-oriented Multiplayer and Massively Multi-
player Online gaming platform [6]. We observe that in many
cases, game servers get saturated due to limited network
bandwidth and that other system resources such as CPU
and memory were not fully used. Lamoth, aims at providing
an efficient “message dissemination service” that leverages
resources that the cloud can provide by making use of an
already-available pub/sub middleware such as Redis.

Our experiments also reveal that a game transmits one of
three kinds of messages: unicast (one recipient), publication
(all subscribers of a given channel) and broadcast (all nodes).
In addition to that, there must be subscribe and unsubscribe op-
erations to register/unregister nodes to channels. Following our
observations, we claim that the publish/subscribe paradigm can
be used to effectively model message transmission in MMOG
games because most message transmissions will be publication
messages. The typical use of pub/sub operations is to perform
state dissemination to interested entities in combination with
interest management techniques. However, despite using such
techniques, the required bandwidth will grow higher than the
available bandwidth under some conditions. We denote three of
such situations: too many connected players, too many players
in the same area (flocking) and players increasing the rate at
which they perform actions.

IV. SYSTEM ARCHITECTURE

Lamoth interfaces with MMOGs and provides a message
dissemination service. It has two components: a thin soft-
ware layer (library) that take as input all messages to be
transmitted (unicast, publication, broadcast) as well as the
subscribe/unsubscribe operations and a set of (at least one)
publish/subscribe (p/s) servers that are to be deployed in
the cloud (public or private cloud). Pub/sub cloud servers
are only running Redis or some other middleware and no



Game Server
broadcast
unicastserver
apple1
player1
player2
player3
player4

p/s node 1
Owns :
broadcast
unicastserver
unicast2
apple1

Player 1
broadcast
unicast1
player1
player3

Player 2
broadcast
unicast2
apple1
player2

Player 3
broadcast
unicast1
player3
player1

Player 4
broadcast
unicast1
apple1
player4

apple1

p/s node 2
Owns :
broadcast
unicastserver
unicast1
unicast4

p/s node 3
Owns :
broadcast
unicastserver
unicast3

Fig. 1. Game scenario example showing 4 players, 3 p/s servers, one game
server as well as a non-player object. All game nodes use the Lamoth software
layer to handle the transmission of all messages. Lamoth which makes use of
the the 3 p/s nodes to handle the delivery process.

other custom/game specific code. Furthermore, p/s servers are
independent, non-clustered and do not communicate with each
other. Lamoth employs a flat pub/sub architecture instead of a
layered architecture in order to optimize latency.

The goal of the software layer is to provide a bridge
between every node in the system and the set of p/s servers
by handling all message transmissions. The software layer
transforms all message transmission calls into pub/sub op-
erations and dispatches them to the appropriate p/s server(s)
who dispatches them to the intended recipients. The Lamoth
software layer also receives incoming messages, decodes them
and queues them to be processed by the game. Pub/sub
nodes only have to support the three main pub/sub operations:
publish, subscribe and unsubscribe.

Because Lamoth is able to handle the exchange of all mes-
sages between all nodes using only basic pub/sub middleware,
it becomes possible to scale by deploying additional pub/sub
(p/s) servers. Lamoth employs a circular hashing technique to
map channels to p/s servers in order to split the load evenly
on all servers. However, servers must be statically defined
prior to launching the game since we do not yet support
adding/removing p/s servers dynamically. There is ongoing
research towards integrating this capability. Figure 1 gives an
example of a game making use of the Lamoth platform.

V. SYSTEM IMPLEMENTATION AND EXPERIMENTS

In order to test the scalability of our proposed platform,
we developped a new network engine for the Mammoth
framework that fully implements the Lamoth platform. We
also made use of the Redis cloud middleware which supports
pub/sub primitives. We ran our experiments on a pool of
100-150 typical desktop machines from the McGill School of
Computer Science labs. Since cloud providers typically use
a large pool of commodity machines, we believe that our
setup can yield results that are similar to experiments run
on real cloud provider infrastructure. Clients are controlled
by AI which imitates real player movements (NPCs). Our
deployment setup consists of a set of nodes simulating clients,
a set of nodes for hosting Redis instances and one node for the
game server. All communications go through the Redis nodes.

We ran experiments that attempted to connect as many
players as possible as well as flocking experiments, combined

with extensive parameter variation. Each node also runs a
monitoring service to record relevant experimental data.

VI. SIMULATION RESULTS

We observe that deploying additional Redis nodes allows
us to connect additional clients. With 1 Redis node, we can
properly handle up to 490 clients and with 8 nodes, up to 910
clients. Thus, Lamoth can allow a game to scale properly by
reserving resources based on the projected load.

Outgoing bandwidth increases in a n2-way as the number
of players located inside the same area increase. Thus, a
flocking behavior of a significant number of players triggered
by a game event can quickly lead to an exhaustion of the
available resources. Our experiments also reveal that adding
additional Redis servers can aid in supporting the additional
flow generated by many flocking players. Thus, should a major
game event happening at some given location be expected, a
MMOG game operator could reserve the appropriate resources
and Lamoth would take care of the load redistribution. Our
experiments also demonstrate that increasing the rate at which
players perform actions can put an additional stress on the
infrastructure and that Lamoth is able to handle such a stress
provided that enough resources are provisionned.

VII. CONCLUSIONS AND FUTURE WORK

We observed that the amount of messages that need to be
transmitted in a MMOG game can often become a bottleneck.
We proposed Lamoth, a platform that provides a software layer
to handle message dissemination by making use of pub/sub
nodes in the cloud containing ready-to-use pub/sub middle-
ware. We integrated Lamoth into Mammoth. Our experiments
reveal that Lamoth does allow a multiplayer game to scale
towards impressive figures, confirming our assumption that the
cloud can be successfully leveraged to support MMOGs even
when some important bottleneck situations are expected.

As future work, we are working towards making Lamoth
more dynamic by allowing cloud pub/sub instances to be
spawned and despawned dynamically as needed. We would
also like to perform simulations on real cloud infrastructure.
We are also looking at how we could provide other MMOG
game services as cloud services.

REFERENCES

[1] J. Chen, B. Wu, M. Delap, B. Knutsson, H. Lu, and C. Amza, “Locality
aware dynamic load management for massively multiplayer games,” in
Proceedings of the tenth ACM SIGPLAN symposium on Principles and
practice of parallel programming, ser. PPoPP ’05. New York, NY, USA:
ACM, 2005, pp. 289–300.

[2] A. Bharambe, J. Pang, and S. Seshan, “Colyseus: a distributed architec-
ture for online multiplayer games,” Berkeley, CA, USA, 2006, p. 155;68.

[3] E. Lety, T. Turletti, and F. Baccelli, “Score: a scalable communication
protocol for large-scale virtual environments,” Networking, IEEE/ACM
Transactions on, vol. 12, no. 2, pp. 247–260, 2004.

[4] M. Claypool, D. Finkel, A. Grant, and M. Solano, “Thin to win? network
performance analysis of the onlive thin client game system,” Piscataway,
NJ, USA, 2012//, pp. 6 pp. –.

[5] M. Najaran and C. Krasic, “Scaling online games with adaptive interest
management in the cloud,” in Network and Systems Support for Games
(NetGames), 2010 9th Annual Workshop on, 2010, pp. 1–6.

[6] J. Kienzle, C. Verbrugge, B. Kemme, A. Denault, and M. Hawker,
“Mammoth: a massively multiplayer game research framework,” in
Proceedings of the 4th International Conference on Foundations of
Digital Games. New York, USA: ACM, 2009, pp. 308–315.


