Dynamoth: A Scalable Pub/Sub Middleware for
Latency-Constrained Applications in the Cloud

Julien Gascon-Samson, Franz-Philippe Garcia, Bettina
Kemme, Jorg Kienzle

School of Computer Science, McGill University
Montreal, Canada

Thursday July 2, 2015

Introduction and Background

Introduction and Background - What is Dynamoth?

@ Channel-based pub/sub service in the Cloud

Introduction and Background

Introduction and Background - What is Dynamoth?

@ Channel-based pub/sub service in the Cloud

@ For any kind of application, with a specific emphasis on
latency-constrained applications

Introduction and Background

Introduction and Background - What is Dynamoth?

@ Channel-based pub/sub service in the Cloud

@ For any kind of application, with a specific emphasis on
latency-constrained applications

@ Can support very large-scale applications

Introduction and Background

Introduction and Background - What is Dynamoth?

Channel-based pub/sub service in the Cloud

For any kind of application, with a specific emphasis on
latency-constrained applications

Can support very large-scale applications

Can support multiple applications simultaneously

Introduction and Background

Introduction and Background - What is Dynamoth?

Channel-based pub/sub service in the Cloud

For any kind of application, with a specific emphasis on
latency-constrained applications

Can support very large-scale applications

Can support multiple applications simultaneously

Scalability / dynamism / extensive load-balancing

Introduction and Background

Introduction and Background - What is Dynamoth?

Channel-based pub/sub service in the Cloud

For any kind of application, with a specific emphasis on
latency-constrained applications

Can support very large-scale applications
Can support multiple applications simultaneously

Scalability / dynamism / extensive load-balancing

Minimizes resource usage

Introduction and Background

Introduction and Background - What is Dynamoth?

Channel-based pub/sub service in the Cloud

For any kind of application, with a specific emphasis on
latency-constrained applications

Can support very large-scale applications

Can support multiple applications simultaneously
Scalability / dynamism / extensive load-balancing
Minimizes resource usage

Proposes mechanisms to deal with channels that cannot be
handled by only one server

Introduction and Background

Introduction and Background - What is Dynamoth?

Channel-based pub/sub service in the Cloud

For any kind of application, with a specific emphasis on
latency-constrained applications

Can support very large-scale applications

Can support multiple applications simultaneously
Scalability / dynamism / extensive load-balancing
Minimizes resource usage

Proposes mechanisms to deal with channels that cannot be
handled by only one server

Built on top of an unmodified single-server pub/sub
middleware (Redis)

Introduction and Background

Channel-Based Pub/Sub

@ Subscribers (in blue) subscribe to channels (topics)
e Publishers (in red) publish to channels

@ All subscribers of a given channel ¢ will receive all publications
sent through ¢

H1

Introduction and Background

Channel-Based Pub/Sub

@ Subscribers (in blue) subscribe to channels (topics)
e Publishers (in red) publish to channels

@ All subscribers of a given channel ¢ will receive all publications
sent through ¢

subseribe(c)

subscrl

Introduction and Background

Channel-Based Pub/Sub

@ Subscribers (in blue) subscribe to channels (topics)
e Publishers (in red) publish to channels

@ All subscribers of a given channel ¢ will receive all publications

W|ish(c,m)

sent through ¢

H1

Introduction and Background

Channel-Based Pub/Sub

@ Subscribers (in blue) subscribe to channels (topics)
e Publishers (in red) publish to channels

@ All subscribers of a given channel ¢ will receive all publications
sent through ¢

Client2

Client5

Introduction and Background

Applications of Channel-Based Pub/Sub

Traffic alert systems

4

Extreme weather alert systems

v

Social networks

<

Chat/IM systems

Massive Multiplayer Online Games

Introduction and Background

Scaling: Consistent Hashing

@ Each pub/sub server
H1 assigned a set of virtual

Uses: T1,T2,T3

Clientl T1,T2 identiﬁel’s
@ Each channel maps to a
"2 virtual identifier (hashing)
T4,T5

o Add a new server: some
Uses: T4,T5,T6 . . . (e
Client2 " of the virtual identifiers of
each server get
“transferred” to new server

T3,T6

Introduction and Background

Dynamoth - Why?

Addresses the shortcomings of consistent hashing:

1) Channels often have different load

Need a finer-grained channel-to-server approach to provide even
load.

Introduction and Background

Dynamoth - Why?

Addresses the shortcomings of consistent hashing:

1) Channels often have different load

Need a finer-grained channel-to-server approach to provide even
load.

N

2) Dynamic sizing

@ Move channels between servers.
@ Remove/add servers on-the-fly.

@ Reconfiguration: clients (publishers/subscribers) must be
aware and react to such changes.

@ During reconfiguration, all messages should still be delivered.

v

Introduction and Background

Dynamoth - Why?

Addresses the shortcomings of consistent hashing:

1) Channels often have different load

Need a finer-grained channel-to-server approach to provide even
load.

N

2) Dynamic sizing

@ Move channels between servers.
@ Remove/add servers on-the-fly.

@ Reconfiguration: clients (publishers/subscribers) must be
aware and react to such changes.

@ During reconfiguration, all messages should still be delivered.

v

3) Even a single channel can overload a server

We propose channel replication as a way to split the load of a single
channel accross multiple servers.

Dynamoth Middleware

Dynamoth Middleware

© Dynamoth Middleware
@ Plan for Publications & Subscriptions
@ Initial Conditions and Bootstrapping

Dynamoth Middleware
°

Dynamoth - Plan for Publications and Subscriptions

Initial conditions

Outside the Cloud Inside the Cloud

Subscriber
(T1,T2,T3)

Global Plan
T1->H1

T2->H1
T3->H2

Publisher

Global
Plan

Dynamoth Middleware
°

Dynamoth - Plan for Publications and Subscriptions

Subscriptions

Outside the Cloud Inside the Cloud

Global

Subscriber i Plan
(T1,T2,T3)
Subscribe
Global
Plan Global Plan

T1l->H1

T2->H1
T3->H2

Publisher

Global
Plan

Global
Plan

Dynamoth Middleware
°

Dynamoth - Plan for Publications and Subscriptions

Subscriptions

Outside the Cloud Inside th

Global
‘ Plan I

Cloud

Subscriber
(T1,T2,T3)

Global Plan
T1->H1

T2->H1
T3->H2

Subsgribe(T3)

Publisher

Dynamoth Middleware
°

Dynamoth - Plan for Publications and Subscriptions

Publications

Outside the Cloud Inside the Cloud

Subscriber
(T1,T2,T3)

Global Plan
T1->H1

T2->H1
T3->H2

Publisher

Global
Plan

Dynamoth Middleware
°

Dynamoth - Plan for Publications and Subscriptions

Publications

Outside the Cloud Inside the Cloud

Subscriber
(T1,T2,T3)

Global Plan
T1->H1

T2->H1
T3->H2

Publisher

Global
Plan

Dynamoth Middleware
°

Dynamoth - Plan for Publications and Subscriptions

Publications

Outside the Cloud Inside the Cloud

Subscriber
(T1,T2,T3)

Global Plan

T1->H1
T2->H1
T3->H2

Publisher

Publisk(T3,m)

Dynamoth Middleware
°

Dynamoth - Plan for Publications and Subscriptions

Publications

Outside the Cloud Inside the Cloud

Subscriber
(T1,T2,T3)

Global Plan
T1->H1

T2->H1
T3->H2

Publisher

Publisk(T3,m)

Dynamoth Middleware
.

Initial Conditions & Bootstrapping

Initial conditions

Outside the Cloud Inside the Cloud

LoadBalancer

b
LA

e

1
1
] Default (consistent hashing)
RGN T1->H1
~_ - T2->H1
T3->H1

Dynamoth Middleware
.

Initial Conditions & Bootstrapping

Subscription: correct server

Outside the Cloud

Inside the Cloud

Subscribe(T1

LoadBalancer

I
]
1
I
]
1
I
N

1
1
] Default (consistent hashing)
PN T1->H1
R T2->H1
T3->H1

Dynamoth Middleware
.

Initial Conditions & Bootstrapping

Subscription: correct server

Outside the Cloud

Inside the Cloud

Subscribe(T1

LoadBalancer

I
]
1
I
]
1
I
N

1
1
] Default (consistent hashing)
PN T1->H1
R T2->H1
T3->H1

Dynamoth Middleware
.

Initial Conditions & Bootstrapping

Subscription: correct server / client plan update

Outside the Cloud

Inside the Cloud

Subscribe(T1

LoadBalancer

I
]
1
I
]
1
I
N

Default (consistent hashing)
AR T1->H1
S-- T2->H1
T3->H1

Dynamoth Middleware
.

Initial Conditions & Bootstrapping

Subscription: incorrect server

Outside the Cloud Inside the Cloud

Subscribe(T3)

Subscriber

LoadBalancer

I
]
1
I
]
1
I
N

1
1
] Default (consistent hashing)
PN T1->H1
R T2->H1
T3->H1

Dynamoth Middleware
.

Initial Conditions & Bootstrapping

Subscription: incorrect server

Outside the Cloud Inside the Cloud

Subscribe(T3)

Subscriber-

switchToH2(T3

LoadBalancer

I
]
1
I
]
1
I
N

1
1
] Default (consistent hashing)
PN T1->H1
R T2->H1
T3->H1

Dynamoth Middleware
.

Initial Conditions & Bootstrapping

Subscription: incorrect server / client plan update

Outside the Cloud Inside the Cloud

Subscribe(T3)

Subscriber-

LoadBalancer

Default (consistent hashing)
T1->H1
T2->H1
T3->H1

Dynamoth Middleware
.

Initial Conditions & Bootstrapping

Publication: correct server

Outside the Cloud Inside the Cloud

LoadBalancer

Default (consistent hashing)
T1->H1
T2->H1
T3->H1

Dynamoth Middleware
.

Initial Conditions & Bootstrapping

Publication: correct server

Outside the Cloud Inside the Cloud

LoadBalancer

Default (consistent hashing)
T1->H1
T2->H1
T3->H1

Dynamoth Middleware
.

Initial Conditions & Bootstrapping

Publication: incorrect s

Outside the Cloud Inside the Cloud

LoadBalancer

Default (consistent hashing)
T1->H1
T2->H1
T3->H1

Dynamoth Middleware
.

Initial Conditions & Bootstrapping

Publication: incorrect se forward

Outside the Cloud Inside the Cloud

LoadBalancer

Default (consistent hashing)
T1->H1
T2->H1
T3->H1

Dynamoth Middleware
.

Initial Conditions & Bootstrapping

Publication: incorrect server / client plan update

Outside the Cloud Inside the Cloud

LoadBalancer

Default (consistent hashing)
T1->H1
T2->H1
T3->H1

Dynamoth Middleware
.

Initial Conditions & Bootstrapping

Publication: incorrect se / message delivery
Outside the Cloud Inside the Cloud
Subscriber w
@ LoadBalancer

Default (consistent hashing)
T1->H1
T2->H1
T3->H1

Dynamoth Middleware
.

Initial Conditions & Bootstrapping

Publication: correct server (with updated client plan)
Outside the Cloud Inside the Cloud
Plan 1 w LoadBalancer
T1->H1 |

Default (consistent hashing)
T1->H1
T2->H1
T3->H1

Dynamoth Middleware
.

Initial Conditions & Bootstrapping

Publication: correct server (with updated client plan)
Outside the Cloud Inside the Cloud
Subscriber w
@ LoadBalancer
. (m)

Default (consistent hashing)
T1->H1
T2->H1
T3->H1

Load Balancing

Load Balancing

© Load Balancing
@ Load Balancing & Reconfiguration
@ Adding a new server
@ Channel Replication
@ Load Balancing Algorithmic Model

Load Balancing
°

Load Balancing & Reconfiguration

Initial conditions

Outside the Cloud Inside the Cloud

Plan
T1->H1
T3->H2

LoadBalancer

b
LA

\
’

’

1

\
\

,______
-
w
)
v
I
IN

1
1
] Default (consistent hashing)
RGN T1->H1
~_ - T2->H1
T3->H1

Load Balancing
°

Load Balancing & Reconfiguration

Stats collected by Local Load Analyzer

Outside the Cloud Inside the Cloud

‘® LoadBalancer

b _

,______
-
=
'
v
I
=

’ ;
|
T3->H2 | Default (consistent hashing)
P T1->H1
Rl T2->H1
T3->H1

Load Balancing
°

Load Balancing & Reconfiguration

Stats sent to Load Balancer

Outside the Cloud

Inside the Cloud

b _

Plan
T1->H1
T3->H2

LoadBalancer

\
’

’

1

\
\

1 1
+ Plan
1 |
T1l->H1 g a
| T3->H2 Default (consistent hashing)
- T1->H1
R T2->H1

T3->H1

Load Balancing
°

Load Balancing & Reconfiguration

New Plan generated / forwarded to all servers

Outside the Cloud Inside the Cloud

b _

i Plan i LoadBalancer
, T1->H1 |
1 T3->H2
1 - 1
1 /’ \l
.e .
! 1
1 Plan v
T1->H1) .

| T3oH2 | Default (consistent hashing)
- T1->H1

ke T2->H1

T3->H1

Load Balancing
°

Load Balancing & Reconfiguration

New Plan generated / forwarded to all servers

Outside the Cloud Inside the Cloud

LoadBalancer

b _
L

-
"
v
I
=

,______
-
w
v
\i
I
N

1
1
] Default (consistent hashing)
=X T1->H1
S - T2->H1
T3->H1

Load Balancing
°

Load Balancing & Reconfiguration

New Plan generated / forwarded to all servers

Outside the Cloud Inside the Cloud

LoadBalancer

b
L5

-
"
v
I
=

,______
-
w
v
\i
I
N

1
1
] Default (consistent hashing)
=X T1->H1
S - T2->H1
T3->H1

Load Balancing
°

Load Balancing & Reconfiguration

oduction of new server S,

Outside the Cloud Inside the Cloud

i\ Plan | LoadBalancer
| Tl->H1 !

| T3->H2 .

! 1

1 d

I\ 1

)

i Plan

1

| T1->H2)|

' _
PR

T3->H2 Default (consistent hashing)
AN T1->H1
S-- T2->H1
T3->H1

Load Balancing
°

Load Balancing & Reconfiguration

Publication: outdated server
Outside the Cloud

Inside the Cloud

LoadBalancer

-
W
v
X
=

h
|
)
| T1->H1
)
)
L

|
|
T3.5HZ | Default (consistent hashing)
JEAIRN T1->H1
e T2->H1
T3->H1

Load Balancing
°

Load Balancing & Reconfiguration

a LoadBalancer
~ 1

Plan |
| T1->H2|
1

switchToH2(T1)

;
|
|
| T1->H1
|
.
3

T3->H2 Default (consistent hashing)
A T1->H1
Rl T2->H1
T3->H1

Load Balancing
°

Load Balancing & Reconfiguration

Publication: forwarded to H,

Outside the Cloud Inside the Cloud

LoadBalancer

switchToH2(T1) forwardToH2(m)

Default (consistent hashing)
T1->H1
T2->H1
T3->H1

Load Balancing
°

Load Balancing & Reconfiguration

Publication: delivered to S»

Outside the Cloud Inside the Cloud

LoadBalancer

4
' switchToH2(T1) forwardToH2(m)
'
'

| T1->H2,
' |
)

Default (consistent hashing)
T1->H1
T2->H1
T3->H1

Load Balancing
°

Load Balancing & Reconfiguration

Publication: client plans updated

Outside the Cloud Inside the Cloud

LoadBalancer

»
| switchToH2(T1) forwardToH2(m)
!

| T1->H2)|
1

Default (consistent hashing)
T1->H1
T2->H1
T3->H1

Load Balancing
°

Load Balancing & Reconfiguration

Subscribing to new server and unsubscribing f

I
]
1
I
]
1
I
N

e
|
- v Plan
\
|
!

Outside the Cloud

unsubscribe(T1)

A

Subscriber

-
=
v
I
N

T1->H2)|
N

Plan
T1->H2
T3->H2

.

suRscribe(T1)

Inside the Cloud

LoadBalancer

Default (consistent hashing)
T1->H1
T2->H1
T3->H1

Load Balancing
°

Load Balancing - Adding a new server

ial conditions

Outside the Cloud Inside the Cloud

LoadBalancer

~eeeaeeey
3
)
=1

Load Balancing
°

Load Balancing - Adding a new server

ial conditions

Outside the Cloud Inside the Cloud

LoadBalancer

~eeeaeeey
3
)
=1

Load Balancing
°

Load Balancing - Adding a new server

awning a new server

Outside the Cloud Inside the Cloud

LoadBalancer

e m

|
l

!

!

Ta->H2 1
P

sm—————e,

Load Balancing
°

Load Balancing - Adding a new server

Generating a new plan

Outside the Cloud Inside the Cloud

LoadBalancer

e m

sm—————e,

Ve

i Plan

Load Balancing
°

Load Balancing - Adding a new server

orwarding new plan to all servers

Outside the Cloud

Inside the Cloud

LoadBalancer

e m

sm—————e,

Ve

Load Balancing
°

Load Balancing - Adding a new server

orwarding new plan to all servers

Outside the Cloud

Inside the Cloud

LoadBalancer

e m

sm—————e,

Ve

Load Balancing
°

Channel Replication

No replication

Outside the Cloud Inside Cloud

a H1

Plan 9 ; @ Channel T is handled by
- i H2 only one server (H;)

9 @] @ All subscribers and publishers

oot Plen H3 use Hp for channel T;

(S 1Plan
ﬂ @ What happens if the load
Plan . cannot be handled by only
ﬂ 7 'Plan one server?
1Plan a g
o 1Plan
'Plan

Load Balancing
°

Channel Replication

No replication

Outside the Cloud Inside Cloud
H1

e @ Channel T; is handled by

; ik H2 only one server (Hp)
- 1 @ All subscribers and publishers
1 an A P
-y T H3 use Hp for channel T;

- @ What happens if the load

Plan - . cannot be handled by only
et 'Plan

» 'pibn one server?
1Plan N 9
o o 'Plan
- PR 1Plan

Load Balancing
°

Channel Replication

Repl.: Too Many Publications

Outside the Cloud Inside Cloud

@ Publishers publish to one server

@ Subscribers subscribe to all servers

H1 300
. = Non-replicated
Plan —¥-Too many publications
'Plan
!

ot :P\anl 250
= it H2
200
1Plan
ot 'Plan
- |
o> pian H3 150

Response Time

=
o
o

a P
1Plan @
et IPlan '4—-—'—'—'/'
e 'Plan
a ey
'Plan a 0
RPN 'Plan g 50 100 150 200 250 300 350 400 450 500 550
. 1 1Plan
Vot

a
o

Number of publications / second

Load Balancing
°

Channel Replication

Repl.: Too Many Publications

@ Publishers publish to one server
Outside the Cloud Inside Cloud . .
@ Subscribers subscribe to all servers
H1 300
! = Non-replicated
IPlan —¥-Too many publications
ot 1Plan 250
had ©' o1} H2
200
[}
1Plan [E
o~ ,Plan
L IPlan H3 3150
1 1 c
o™ 1]
(=X
3
ﬂ @ 8100
,Plan
et 1Plan '4——'_ v
ﬂ e 1Plan 50
o
'Plan a 0
N 'Plan 50 100 150 200 250 300 350 400 450 500 550
ot :P'a"l Number of publications / second

Load Balancing
°

Channel Replication

Repl.: Too Many Publications

@ Publishers publish to one server

Outside the Cloud Inside Cloud . .
@ Subscribers subscribe to all servers
300
—— Non-replicated
'Plan

—¥-Too many publications

250

H1
[t :P\arL H2
200
1Plan
ot 'Plan
- '
- 1Plan H3
a N
1Plan @
et 1Plan — —%
ﬂ e 'Plan
=
'Plan a 0
l_ = 1Plan 50 100 150 200 250 300 350 400 450 500 550
1Plan
t_/‘l

-
a
o

Response Time
15
o

a
o

Number of publications / second

Load Balancing
°

Channel Replication

Repl.: Too Many Publications

Outside the Cloud Inside Cloud

@ Publishers publish to one server

@ Subscribers subscribe to all servers

300

H1
' —— Non-replicated
'P‘an. ' —¥-Too many publications
oY ,Plan 250
[t :P\arL H2
200
1Plan
et 'Plan
- '
[1Plan H3
a PN
1Plan @
[IPlan — §—F—
ﬂ (N 'Plan
| PN
'Plan a 0
RPN 1Plan 50 100 150 200 250 300 350 400 450 500 550
y

-
a
o

Response Time
15
o

a
o

Number of publications / second

Load Balancing
°

Channel Replication

Repl.: Too Many Publications
@ Publishers publish to one server

Outside the Cloud Inside Cloud . .
@ Subscribers subscribe to all servers
300
—— Non-replicated
—¥-Too many publications
250
200
[}
£
=
2150
c
Q
(=X
]
& 100
50

0
50 100 150 200 250 300 350 400 450 500 550
Number of publications / second

Load Balancing
°

Channel Replication

Repl.: Too Many Publications
@ Publishers publish to one server

Outside the Cloud Inside Cloud . .
@ Subscribers subscribe to all servers
300
—— Non-replicated
—¥-Too many publications
250
200
[}
£
=
2150
c
Q
(=X
]
& 100
50

0
50 100 150 200 250 300 350 400 450 500 550
Number of publications / second

Load Balancing
°

Channel Replication

Repl.: Too Many Publications
@ Publishers publish to one server

Outside the Cloud Inside Cloud

@ Subscribers subscribe to all servers

H1 300
—— Non-replicated
—¥-Too many publications
250
200
Q
£
=
2150
c
Q
Q.
0
& 100
50

0
50 100 150 200 250 300 350 400 450 500 550
1 Number of publications / second

Load Balancing
°

Channel Replication

Repl.: Too Many Subscribers

Outside the Cloud Inside Cloud

@ Publishers publish to all servers

@ Subscribers subscribe to one server

H1 900
[—— Non-replicated
,Plan 800 ~¥—Too many subscribers ¢
1Plan

e an] H2 700
600
! [}
o 1Pl £ 500
w_e~ Plan
- '
- 1Plan H3 ?
o™ S 400
g
300
1Plan &
et 1Plan 200
1Plan

[
o
o

Number of subscribers

o~
ﬂ - an|
'Plan 0
Lo Plan 0 100 200 300 400 500 600 700 800 900
. 1 1Plan
o

Load Balancing
°

Channel Replication

Repl.: Too Many Subscribers

@ Publishers publish to all servers
Outside the Cloud Inside Cloud . .
@ Subscribers subscribe to one server
900
—— Non-replicated
800 =¥-Too many subscribers ¢
700
600
[0
£
F 500
[0}
2
S 400
Q
3
& 300
200
100
0
0 100 200 300 400 500 600 700 800 900
Number of subscribers

Load Balancing
°

Channel Replication

Repl.: Too Many Subscribers

@ Publishers publish to all servers
Outside the Cloud Inside Cloud . .
@ Subscribers subscribe to one server
H1 900
[—— Non-replicated
[Plant o 800 ~¥—Too many subscribers ¢
o™ 1Plan
- 700
600
b [0
1Plan £
e 1Plan F 500
] [
- 2
S 400
Q
8 300
1Plan &
(S 1Plan 200
e 1Plan
ot 100
'Plan 0
(el "Blan 0 100 200 300 400 500 600 700 800 900
- 1
[:Plaﬂl Number of subscribers

Load Balancing
°

Channel Replication

Repl.: Too Many Subscribers

@ Publishers publish to all servers

Outside the Cloud Inside Cloud . .
@ Subscribers subscribe to one server
H1 900
[—— Non-replicated
[Plant o 800 ~¥—Too many subscribers ¢
o 1Plan
- 700
600
b [0
1Plan £
e 1Plan F 500
Voo [
- 2
S 400
Q
8 300
1Plan &
(S 1Plan 200
N
(S 100
'Plan 0
ol "plan 0 100 200 300 400 500 600 700 800 900
-)
[:Plaﬂl Number of subscribers

Load Balancing

Channel Replication

Repl.: Too Many Subscribers

@ Publishers publish to all servers
Outside the Cloud Inside Cloud . .
@ Subscribers subscribe to one server
900
—— Non-replicated
800 =¥-Too many subscribers ¢
700
600
[0
£
F 500
[0}
2
S 400
Q
3
& 300
200
100
0
0 100 200 300 400 500 600 700 800 900
Number of subscribers

Load Balancing
°0

Load Balancing Algorithmic Model

Load Balancing Algorithm Outline:

@ Channel-Level Load Balancing: check whether any channel
should be replicated

® Too many publishers / too many subscribers / no replication
@ |If already replicated: increase / decrease number of replicas?

@ System-Level Load Balancing

Load Balancing
oce

System-Level Load Balancing

© Channel-Level Load Balancing
@ System-Level Load Balancing

@ Servers overloaded?

Load Ratio

LR, = M;/T;

@ M;: measured outgoing bandwidth of server

@ T;: maximum outgoing bandwidth supported by the server

Load Balancing
oce

System-Level Load Balancing

© Channel-Level Load Balancing
@ System-Level Load Balancing
@ Servers overloaded?

@ Migrate channels until Load Ratio < threshold (80%) for all
servers

Load Ratio

LR, = M;/T;

@ M;: measured outgoing bandwidth of server

@ T;: maximum outgoing bandwidth supported by the server

Load Balancing
oce

System-Level Load Balancing

© Channel-Level Load Balancing
@ System-Level Load Balancing
@ Servers overloaded?

@ Migrate channels until Load Ratio < threshold (80%) for all
servers
@ If needed: spawn additional servers

Load Ratio

LR = M;/T;

@ M;: measured outgoing bandwidth of server

@ T;: maximum outgoing bandwidth supported by the server

Load Balancing
oce

System-Level Load Balancing

© Channel-Level Load Balancing
@ System-Level Load Balancing
@ Servers overloaded?

@ Migrate channels until Load Ratio < threshold (80%) for all
servers
@ If needed: spawn additional servers

@ Servers underloaded (if no servers are overloaded)?

Load Ratio

LR = M;/T;

@ M;: measured outgoing bandwidth of server

@ T;: maximum outgoing bandwidth supported by the server

Load Balancing
oce

System-Level Load Balancing

© Channel-Level Load Balancing
@ System-Level Load Balancing
@ Servers overloaded?

@ Migrate channels until Load Ratio < threshold (80%) for all
servers
@ If needed: spawn additional servers
@ Servers underloaded (if no servers are overloaded)?

@ If overall load < a given threshold: slowly remove channels
from lowest-loaded server

Load Ratio

LR = M;/T;

@ M;: measured outgoing bandwidth of server

@ T;: maximum outgoing bandwidth supported by the server

Load Balancing
oce

System-Level Load Balancing

© Channel-Level Load Balancing
@ System-Level Load Balancing
@ Servers overloaded?

@ Migrate channels until Load Ratio < threshold (80%) for all
servers
@ If needed: spawn additional servers

@ Servers underloaded (if no servers are overloaded)?

@ If overall load < a given threshold: slowly remove channels
from lowest-loaded server
® When load of lowest-loaded server reaches 0, despawn it

Load Ratio

LR = M;/T;

@ M;: measured outgoing bandwidth of server

@ T;: maximum outgoing bandwidth supported by the server

Experiments

Experiments

@ Experiments

Experiments

Implementation & Environnement

Implementation

@ Built on top of the
McGill's Mammoth
project

@ Around 110 Java classes /
10,000 lines of code

@ Uses unmodified
Open-Source Redis
software for pub/sub

@ Experiments done over a
simple game (RGame)

o Large volume of
subscriptions and
publications

Experiments

Experimental Setup

Experimental Setup
@ McGill School of
Computer Science lab

machines (80)

o Pub/sub servers + LLA

o Load balancer

o Clients - 20 clients per
machine

@ > 1000 game clients

@ Latency Emulation using
King Dataset

Experiments

Experiment 1 - Channel-level Scalability (Replication)

Too Many Publications

Too Many Subscribers

300 900
=~ Non-replicated =~ Non-replicated
~¥-Too many publications 800 ~¥-Too many subscribers ¢
250
700
® 200 ® 600
£ £
= F 500
g 150 3
g § 400
0 0
@ 100 & 300
¢ ' 200
50
100
0 0
50 100 150 200 250 300 350 400 450 500 550 0 100 200 300 400 500 600 700 800 900
Number of publications / second Number of subscribers

Experiments

Experiment 2 - Scalability

Number of Players

1200

1000 — # players

800

600

Number of players

400

200

0 100 200 300 400 500 600
Time (seconds)

Experiments

Experiment 2 - Scalability

Load Balancing

1200 * * * * * * * ¢ ¢ ¢ o * * & o * * ° 9
L] L] e 66 o0 o

players 8
1000 # pub/sub servers (DLB) 2
" # pub/sub servers (CH) 7 E
¢ DLB: Rebalancing »
o 800 ® CH: Rebalancing 6z
[°
& 4
5 5&
5 600 y E
% 400 3 5
P
200 £

0 0

0 100 200 300 400 500 600

Time (seconds)

Experiments

Experiment 2 - Scalability

Average Response Ti

1200 * * * * * * * & 6 0 0 * & o * * o 9
L] L] o ® 0o 0 o
000 — Dynamoth Load Balancer (DLB): 8
------- Consistent Hashing (CH) i -
——# players
800 - # pub/sub servers (DLB) . 6

- # pub/sub servers (CH)
4 DLB: Rebalancing

® : i
600 CH: Rebalancing

Number of pub/sub (Redis) servers

Average Response Time (ms) / Number of players

300 400 500 600
Time (seconds)

Conclusion & Future Work

wE e

Conclusion & Future Work

© Conclusion & Future Work

Conclusion & Future Work

wE e

Conclusion & Future Work

Conclusion:

Service for scalable topic-based pub/sub in the Cloud
Can handle channels with very high load patterns

Lazy plan propagation

Forwarding to prevent message loss while changing plans

Uses unmodified pub/sub software (ex: Redis)

Conclusion & Future Work

wE e

Conclusion & Future Work

Conclusion:
@ Service for scalable topic-based pub/sub in the Cloud
@ Can handle channels with very high load patterns
@ Lazy plan propagation
e Forwarding to prevent message loss while changing plans
@ Uses unmodified pub/sub software (ex: Redis)
Future Work:

@ CPU load in Load Balancing (CPU constrained in Cloud
environments)

@ Cost model to minimize costs in the Cloud
@ Reliability & Fault Tolerance
o Large-Scale real-time Wide-Area pub/sub support

Conclusion & Future Work

Thank you for your attention!

Algorithm 1 - Replication

Determining if replication should be used

begin

Pratio = F#publications/#subscribers Sratio =
#subscribers/#publications;

if Pratio > AllSubsihresnola and #publications > Publicationgnreshold
then

Nservers = ratio/AHSUbsthreshold;

replicate(ALL _SUBSCRIBERS, Nservers)

end

else if S;atic > AllPubsthreshola and #subscribers > Subscriberthreshold
then

Nservers = ratio/AHPUbsthreshold;

replicate(ALL PUBLISHERS, Nservers)

end

else
| replicate(NO REPLICATION)
end

end

Algorithm 2 - High-load plan

Generating a high-load plan

begin

P* = P.copy() while true do

(Hmax,LRmax) = max(LR; V H;);

if LRmax < LR"" then

| return P*

end

LR = URGenc

while LRmax > LR%" do
(Hm,'n,LRm,'n) = min(LR,- A4 H,');
cott. = getBusiestChannel(Hax);
P* migrate(cS, Hmax — Himin):
LRmax = estimatel R(Px)

end

end

end

Experiment 2 - Scalability (4)

Load Balancer - Pub/Sub Server Load

1,6 - 8
T
2
63
@
S 573
=~ X
2 ~
= o
¢ 43
° 5
@ =
S A 3 f_l
o
Average Load Ratio > g
rrrrrrrrrr Max Load Ratio E
¢ Rebalancing 1 z

-------- # pub/sub servers
0 0

0 100 200 300 400 500 600
Time (seconds)

—~
—
~
>
=
=2
i)
n
e
L
1
o
s}
c
()
£
o
[¢D)
o
X
L

umber of Players & Numb

900

800

slanas (sipay) gns/gnd Jo JaguinN

~ © 1+ ® & < Og
S
o)
o
n
<~
o
=]
<
o
Ty}
™
o
S
)
o
rel
«
o
t S
' 2
H
R
N1
m W
> -
@
o 2
p=
[o
S DI 3
>8 ®© —
&85 o s
S 2ag H
% 0 H
! : =
te I 0
!
L]]
L]]
H
H
H
+ o
o 9 9 9 9 9 o o
S & & & & & o
~ ©®© b ¥ ® «& o

s1akeld Jo JaquinN

Time (seconds)

Experiment 3 - Elasticity (2)

800 40000
* * * o * o o * o * * ¢ & o+ o * * o

700 . 35000
Average Response Time H g
'g 600 "==mme Total Outgoing Messages 30000 9
£ ¢ Rebalancing 0
. Q
g 500 » 25000 =
g i g
%) B =
S 400 A 20000 &
a i] 3
3 ' N, =
300 ~ 15000 @
o) S
© j=2)
T 200 10000 3

2
=
100 h 5000 R
0’ 0
0 50 100 150 200 250 300 350 400 450 500
Time (seconds)

References for slide Applications of Channel-Based Pub/Sub:

(2]
o
o
o
o

http://cdn-parismatch.ladmedia.fr/var/news/storage/images/paris-match /actu/societe/samedi-
rouge-sur-les-routes-de-france-156207 /1585652-1-fre-FR /Samedi-rouge-sur-les-routes-de-
France.jpg

https://www.drupal.org/files/project-images/gcm-logo.png
http://www.memoclic.com/medias/images/contenus/4/1198.jpg

http://theloftytraveler.com/wp-content/uploads/2012/03 /stormyWeather.jpg

https://upload.wikimedia.org/wikipedia/en/thumb/9/9f/Twitter bird logo 2012.svg/1267px-
Twitter _bird_logo 2012.svg.png

(Own image)

	Introduction and Background
	Dynamoth Middleware
	Plan for Publications & Subscriptions
	Initial Conditions and Bootstrapping

	Load Balancing
	Load Balancing & Reconfiguration
	Adding a new server
	Channel Replication
	Load Balancing Algorithmic Model

	Experiments
	Conclusion & Future Work

