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Channel-based pub/sub service in the Cloud

For any kind of application, with a specific emphasis on
latency-constrained applications

Can support very large-scale applications

Can support multiple applications simultaneously
Scalability / dynamism / extensive load-balancing
Minimizes resource usage

Proposes mechanisms to deal with channels that cannot be
handled by only one server

Built on top of an unmodified single-server pub/sub
middleware (Redis)
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Channel-Based Pub/Sub

@ Subscribers (in blue) subscribe to channels (topics)
e Publishers (in red) publish to channels

@ All subscribers of a given channel ¢ will receive all publications
sent through ¢

Client2

Client5
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Applications of Channel-Based Pub/Sub

Traffic alert systems

4

Extreme weather alert systems

v

Social networks

<

Chat/IM systems

Massive Multiplayer Online Games
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Scaling: Consistent Hashing

@ Each pub/sub server
H1 assigned a set of virtual

Uses: T1,T2,T3

Clientl T1,T2 identiﬁel’s
@ Each channel maps to a
"2 virtual identifier (hashing)
T4,T5

o Add a new server: some
Uses: T4,T5,T6 . . . (e
Client2 " of the virtual identifiers of
each server get
“transferred” to new server

T3,T6




Introduction and Background

Dynamoth - Why?

Addresses the shortcomings of consistent hashing:

1) Channels often have different load

Need a finer-grained channel-to-server approach to provide even
load.




Introduction and Background

Dynamoth - Why?

Addresses the shortcomings of consistent hashing:

1) Channels often have different load

Need a finer-grained channel-to-server approach to provide even
load.

N

2) Dynamic sizing

@ Move channels between servers.
@ Remove/add servers on-the-fly.

@ Reconfiguration: clients (publishers/subscribers) must be
aware and react to such changes.

@ During reconfiguration, all messages should still be delivered.

v




Introduction and Background

Dynamoth - Why?

Addresses the shortcomings of consistent hashing:

1) Channels often have different load

Need a finer-grained channel-to-server approach to provide even
load.

N

2) Dynamic sizing

@ Move channels between servers.
@ Remove/add servers on-the-fly.

@ Reconfiguration: clients (publishers/subscribers) must be
aware and react to such changes.

@ During reconfiguration, all messages should still be delivered.

v

3) Even a single channel can overload a server

We propose channel replication as a way to split the load of a single
channel accross multiple servers.
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© Load Balancing
@ Load Balancing & Reconfiguration
@ Adding a new server
@ Channel Replication
@ Load Balancing Algorithmic Model
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Load Balancing & Reconfiguration

Stats sent to Load Balancer
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Load Balancing & Reconfiguration
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Load Balancing & Reconfiguration

Publication: outdated server
Outside the Cloud

Inside the Cloud

LoadBalancer

-
W
v
X
=

h
|
)
| T1->H1
)
)
L

|
|
T3.5HZ | Default (consistent hashing)
JEAIRN T1->H1
e T2->H1
T3->H1




Load Balancing
°

Load Balancing & Reconfiguration

a LoadBalancer
~ 1

Plan |
| T1->H2|
1

switchToH2(T1)

;
|
|
| T1->H1
|
.
3

T3->H2 Default (consistent hashing)
A T1->H1
Rl T2->H1
T3->H1




Load Balancing
°

Load Balancing & Reconfiguration

Publication: forwarded to H,

Outside the Cloud Inside the Cloud

LoadBalancer

switchToH2(T1) forwardToH2(m)

Default (consistent hashing)
T1->H1
T2->H1
T3->H1




Load Balancing
°

Load Balancing & Reconfiguration

Publication: delivered to S»

Outside the Cloud Inside the Cloud

LoadBalancer

4
' switchToH2(T1) forwardToH2(m)
'
'

| T1->H2,
' |
)

Default (consistent hashing)
T1->H1
T2->H1
T3->H1




Load Balancing
°

Load Balancing & Reconfiguration

Publication: client plans updated
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Load Balancing & Reconfiguration
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Load Balancing - Adding a new server

awning a new server
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Load Balancing - Adding a new server

Generating a new plan
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No replication
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Channel Replication

Repl.: Too Many Subscribers

@ Publishers publish to all servers
Outside the Cloud Inside Cloud . .
@ Subscribers subscribe to one server
900
—— Non-replicated
800 =¥-Too many subscribers ¢
700
600
[0
£
F 500
[0}
2
S 400
Q
3
& 300
200
100
0
0 100 200 300 400 500 600 700 800 900
Number of subscribers




Load Balancing
°0

Load Balancing Algorithmic Model

Load Balancing Algorithm Outline:

@ Channel-Level Load Balancing: check whether any channel
should be replicated

® Too many publishers / too many subscribers / no replication
@ |If already replicated: increase / decrease number of replicas?

@ System-Level Load Balancing
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© Channel-Level Load Balancing
@ System-Level Load Balancing

@ Servers overloaded?

Load Ratio

LR, = M;/T;

@ M;: measured outgoing bandwidth of server

@ T;: maximum outgoing bandwidth supported by the server
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@ System-Level Load Balancing
@ Servers overloaded?

@ Migrate channels until Load Ratio < threshold (80%) for all
servers
@ If needed: spawn additional servers
@ Servers underloaded (if no servers are overloaded)?

@ If overall load < a given threshold: slowly remove channels
from lowest-loaded server

Load Ratio

LR = M;/T;

@ M;: measured outgoing bandwidth of server
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System-Level Load Balancing

© Channel-Level Load Balancing
@ System-Level Load Balancing
@ Servers overloaded?

@ Migrate channels until Load Ratio < threshold (80%) for all
servers
@ If needed: spawn additional servers

@ Servers underloaded (if no servers are overloaded)?

@ If overall load < a given threshold: slowly remove channels
from lowest-loaded server
® When load of lowest-loaded server reaches 0, despawn it

Load Ratio

LR = M;/T;

@ M;: measured outgoing bandwidth of server

@ T;: maximum outgoing bandwidth supported by the server
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Implementation & Environnement

Implementation

@ Built on top of the
McGill's Mammoth
project

@ Around 110 Java classes /
10,000 lines of code

@ Uses unmodified
Open-Source Redis
software for pub/sub

@ Experiments done over a
simple game (RGame)

o Large volume of
subscriptions and
publications
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Experimental Setup

Experimental Setup
@ McGill School of
Computer Science lab

machines (80)

o Pub/sub servers + LLA

o Load balancer

o Clients - 20 clients per
machine

@ > 1000 game clients

@ Latency Emulation using
King Dataset
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Experiment 1 - Channel-level Scalability (Replication)
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Experiment 2 - Scalability
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Experiment 2 - Scalability

Load Balancing
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Experiment 2 - Scalability

Average Response Ti
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Conclusion & Future Work

Conclusion:

Service for scalable topic-based pub/sub in the Cloud
Can handle channels with very high load patterns

Lazy plan propagation

Forwarding to prevent message loss while changing plans

Uses unmodified pub/sub software (ex: Redis)
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Conclusion & Future Work

Conclusion:
@ Service for scalable topic-based pub/sub in the Cloud
@ Can handle channels with very high load patterns
@ Lazy plan propagation
e Forwarding to prevent message loss while changing plans
@ Uses unmodified pub/sub software (ex: Redis)
Future Work:

@ CPU load in Load Balancing (CPU constrained in Cloud
environments)

@ Cost model to minimize costs in the Cloud
@ Reliability & Fault Tolerance
o Large-Scale real-time Wide-Area pub/sub support



Conclusion & Future Work

Thank you for your attention!



Algorithm 1 - Replication

Determining if replication should be used

begin

Pratio = F#publications/#subscribers Sratio =
#subscribers/#publications;

if Pratio > AllSubsihresnola and #publications > Publicationgnreshold
then

Nservers = ratio/AHSUbsthreshold;

replicate(ALL _SUBSCRIBERS, Nservers)

end

else if S;atic > AllPubsthreshola and #subscribers > Subscriberthreshold
then

Nservers = ratio/AHPUbsthreshold;

replicate(ALL PUBLISHERS, Nservers)

end

else
| replicate(NO REPLICATION)
end

end




Algorithm 2 - High-load plan

Generating a high-load plan

begin

P* = P.copy() while true do

(Hmax,LRmax) = max(LR; V H;);

if LRmax < LR"" then

| return P*

end

LR = URGenc

while LRmax > LR%" do
(Hm,'n,LRm,'n) = min(LR,- A4 H,');
cott. = getBusiestChannel(Hax);
P* migrate(cS, Hmax — Himin):
LRmax = estimatel R(Px)

end

end

end




Experiment 2 - Scalability (4)

Load Balancer - Pub/Sub Server Load

1,6 - 8
T
2
63
@
S 573
=~ X
2 ~
= o
¢ 43
° 5
@ =
S A 3 f_l
o
Average Load Ratio > g
rrrrrrrrrr Max Load Ratio E
¢ Rebalancing 1 z

-------- # pub/sub servers
0 0

0 100 200 300 400 500 600
Time (seconds)




—~
—
~
>
=
=2
i)
n
e
L
1
o
s}
c
()
£
o
[¢D)
o
X
L

umber of Players & Numb

900

800

slanas (sipay) gns/gnd Jo JaguinN

~ © 1+ ® & < Og
S
o)
o
n
<~
o
=]
<
o
Ty}
™
o
S
)
o
rel
«
o
t S
' 2
H
R
N1
m ..... W
> -
@
o 2
p=
[ o
S DI 3
>8 ®© —
&85 o s
S 2ag H
% 0 H
! : =
te I 0
!
L] ]
L] ]
H
H
H
+ o
o 9 9 9 9 9 o o
S & & & & & o
~ ©®© b ¥ ® «& o

s1akeld Jo JaquinN

Time (seconds)




Experiment 3 - Elasticity (2)
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References for slide Applications of Channel-Based Pub/Sub:
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http://cdn-parismatch.ladmedia.fr/var/news/storage/images/paris-match /actu/societe/samedi-
rouge-sur-les-routes-de-france-156207 /1585652-1-fre-FR /Samedi-rouge-sur-les-routes-de-
France.jpg

https://www.drupal.org/files/project-images/gcm-logo.png
http://www.memoclic.com/medias/images/contenus/4/1198.jpg

http://theloftytraveler.com/wp-content/uploads/2012/03 /stormyWeather.jpg

https://upload.wikimedia.org/wikipedia/en/thumb/9/9f/Twitter bird logo 2012.svg/1267px-
Twitter _bird_logo 2012.svg.png
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