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Introduction and Background - What is Dynamoth?

Channel-based pub/sub service in the Cloud

For any kind of application, with a specific emphasis on
latency-constrained applications
Can support very large-scale applications
Can support multiple applications simultaneously
Scalability / dynamism / extensive load-balancing
Minimizes resource usage
Proposes mechanisms to deal with channels that cannot be
handled by only one server
Built on top of an unmodified single-server pub/sub
middleware (Redis)
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Channel-Based Pub/Sub

Subscribers (in blue) subscribe to channels (topics)
Publishers (in red) publish to channels
All subscribers of a given channel c will receive all publications
sent through c
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Applications of Channel-Based Pub/Sub

Traffic alert systems

Mobile device notif. frameworks

Chat/IM systems

Extreme weather alert systems

Social networks

Massive Multiplayer Online Games
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Scaling: Consistent Hashing

Each pub/sub server
assigned a set of virtual
identifiers
Each channel maps to a
virtual identifier (hashing)
Add a new server: some
of the virtual identifiers of
each server get
“transferred” to new server
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Dynamoth - Why?

Addresses the shortcomings of consistent hashing:

1) Channels often have different load

Need a finer-grained channel-to-server approach to provide even
load.

2) Dynamic sizing

Move channels between servers.
Remove/add servers on-the-fly.
Reconfiguration: clients (publishers/subscribers) must be
aware and react to such changes.
During reconfiguration, all messages should still be delivered.

3) Even a single channel can overload a server

We propose channel replication as a way to split the load of a single
channel accross multiple servers.
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Dynamoth Middleware

1 Introduction and Background

2 Dynamoth Middleware
Plan for Publications & Subscriptions
Initial Conditions and Bootstrapping

3 Load Balancing
Load Balancing & Reconfiguration
Adding a new server
Channel Replication
Load Balancing Algorithmic Model

4 Experiments

5 Conclusion & Future Work
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Dynamoth - Plan for Publications and Subscriptions

Initial conditions
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Initial Conditions & Bootstrapping

Publication: incorrect server / message delivery
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Initial Conditions & Bootstrapping

Publication: correct server (with updated client plan)
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Load Balancing

1 Introduction and Background

2 Dynamoth Middleware
Plan for Publications & Subscriptions
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Load Balancing & Reconfiguration

Initial conditions
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Load Balancing & Reconfiguration

Stats collected by Local Load Analyzer
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Load Balancing & Reconfiguration

Stats sent to Load Balancer
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Load Balancing & Reconfiguration

New Plan generated / forwarded to all servers
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Load Balancing & Reconfiguration

Introduction of new server S2
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Load Balancing & Reconfiguration

Publication: outdated server
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Load Balancing & Reconfiguration

Publication: delivered and request to update client plans
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Load Balancing & Reconfiguration

Publication: client plans updated
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Load Balancing & Reconfiguration

Subscribing to new server and unsubscribing from old server
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Load Balancing - Adding a new server

Initial conditions
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Load Balancing - Adding a new server

Spawning a new server
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Load Balancing - Adding a new server

Generating a new plan



Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Load Balancing - Adding a new server

Forwarding new plan to all servers
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Channel Replication

No replication

Channel T1 is handled by
only one server (H1)
All subscribers and publishers
use H1 for channel T1

What happens if the load
cannot be handled by only
one server?
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Channel Replication

Repl.: Too Many Publications
Publishers publish to one server

Subscribers subscribe to all servers
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Channel Replication
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Load Balancing Algorithmic Model

Load Balancing Algorithm Outline:
1 Channel-Level Load Balancing: check whether any channel

should be replicated
1 Too many publishers / too many subscribers / no replication
2 If already replicated: increase / decrease number of replicas?

2 System-Level Load Balancing
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System-Level Load Balancing

1 Channel-Level Load Balancing
2 System-Level Load Balancing

1 Servers overloaded?

1 Migrate channels until Load Ratio < threshold (80%) for all
servers

2 If needed: spawn additional servers

2 Servers underloaded (if no servers are overloaded)?

1 If overall load < a given threshold: slowly remove channels
from lowest-loaded server

2 When load of lowest-loaded server reaches 0, despawn it

Load Ratio
LRi = Mi/Ti

Mi : measured outgoing bandwidth of server
Ti : maximum outgoing bandwidth supported by the server
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Implementation & Environnement

Implementation
Built on top of the
McGill’s Mammoth
project
Around 110 Java classes /
10,000 lines of code
Uses unmodified
Open-Source Redis
software for pub/sub
Experiments done over a
simple game (RGame)

Large volume of
subscriptions and
publications
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Experimental Setup

Experimental Setup
McGill School of
Computer Science lab
machines (80)

Pub/sub servers + LLA
Load balancer
Clients - 20 clients per
machine

> 1000 game clients
Latency Emulation using
King Dataset
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Experiment 1 - Channel-level Scalability (Replication)
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Experiment 2 - Scalability
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Experiment 2 - Scalability

Load Balancing
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Experiment 2 - Scalability

Average Response Time

.
0 100 200 300 400 500 600

0

200

400

600

800

1000

1200

0

1

2

3

4

5

6

7

8

9

Dynamoth Load Balancer (DLB)
Consistent Hashing (CH)
# players
# pub/sub servers (DLB)
# pub/sub servers (CH)
DLB: Rebalancing
CH: Rebalancing

Time (seconds)

A
ve

ra
ge

 R
es

po
ns

e
 T

im
e

 (
m

s)
 /

 N
um

be
r 

o
f 

pl
a

ye
rs

N
um

be
r 

o
f 

pu
b/

su
b 

(R
e

di
s)

 s
e

rv
e

rs



Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Conclusion & Future Work
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Conclusion & Future Work

Conclusion:
Service for scalable topic-based pub/sub in the Cloud
Can handle channels with very high load patterns
Lazy plan propagation
Forwarding to prevent message loss while changing plans
Uses unmodified pub/sub software (ex: Redis)

Future Work:
CPU load in Load Balancing (CPU constrained in Cloud
environments)
Cost model to minimize costs in the Cloud
Reliability & Fault Tolerance
Large-Scale real-time Wide-Area pub/sub support
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Reliability & Fault Tolerance
Large-Scale real-time Wide-Area pub/sub support



Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Conclusion & Future Work

Thank you for your attention!
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Algorithm 1 - Replication

Determining if replication should be used
begin

Pratio = #publications/#subscribers Sratio =
#subscribers/#publications;
if Pratio > AllSubsthreshold and #publications > Publicationthreshold

then
Nservers = Pratio/AllSubsthreshold;
replicate(ALL_SUBSCRIBERS, Nservers)

end
else if Sratio > AllPubsthreshold and #subscribers > Subscriberthreshold

then
Nservers = Sratio/AllPubsthreshold;
replicate(ALL_PUBLISHERS, Nservers)

end
else

replicate(NO_REPLICATION)
end

end
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Algorithm 2 - High-load plan

Generating a high-load plan
begin

P* = P.copy() while true do
(Hmax ,LRmax) = max(LRi ∀ Hi );
if LRmax < LRhigh then

return P*
end
LRmax = LRmax ;
while LRmax ≥ LRsafe do

(Hmin,LRmin) = min(LRi ∀ Hi );
cout
max = getBusiestChannel(Hmax);
P*.migrate(cout

max , Hmax → Hmin);
LRmax = estimateLR(P∗)

end
end

end
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Experiment 2 - Scalability (4)

Dynamoth Load Balancer - Pub/Sub Server Load
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Experiment 3 - Elasticity (1)

Number of Players & Number of pub/sub Servers
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Experiment 3 - Elasticity (2)

Avergage Response Time & Outgoing Messages
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