
Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Dynamoth: A Scalable Pub/Sub Middleware for
Latency-Constrained Applications in the Cloud

Julien Gascon-Samson, Franz-Philippe Garcia, Bettina
Kemme, Jörg Kienzle

School of Computer Science, McGill University
Montreal, Canada

Thursday July 2, 2015

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Introduction and Background - What is Dynamoth?

Channel-based pub/sub service in the Cloud

For any kind of application, with a specific emphasis on
latency-constrained applications
Can support very large-scale applications
Can support multiple applications simultaneously
Scalability / dynamism / extensive load-balancing
Minimizes resource usage
Proposes mechanisms to deal with channels that cannot be
handled by only one server
Built on top of an unmodified single-server pub/sub
middleware (Redis)

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Introduction and Background - What is Dynamoth?

Channel-based pub/sub service in the Cloud
For any kind of application, with a specific emphasis on
latency-constrained applications

Can support very large-scale applications
Can support multiple applications simultaneously
Scalability / dynamism / extensive load-balancing
Minimizes resource usage
Proposes mechanisms to deal with channels that cannot be
handled by only one server
Built on top of an unmodified single-server pub/sub
middleware (Redis)

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Introduction and Background - What is Dynamoth?

Channel-based pub/sub service in the Cloud
For any kind of application, with a specific emphasis on
latency-constrained applications
Can support very large-scale applications

Can support multiple applications simultaneously
Scalability / dynamism / extensive load-balancing
Minimizes resource usage
Proposes mechanisms to deal with channels that cannot be
handled by only one server
Built on top of an unmodified single-server pub/sub
middleware (Redis)

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Introduction and Background - What is Dynamoth?

Channel-based pub/sub service in the Cloud
For any kind of application, with a specific emphasis on
latency-constrained applications
Can support very large-scale applications
Can support multiple applications simultaneously

Scalability / dynamism / extensive load-balancing
Minimizes resource usage
Proposes mechanisms to deal with channels that cannot be
handled by only one server
Built on top of an unmodified single-server pub/sub
middleware (Redis)

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Introduction and Background - What is Dynamoth?

Channel-based pub/sub service in the Cloud
For any kind of application, with a specific emphasis on
latency-constrained applications
Can support very large-scale applications
Can support multiple applications simultaneously
Scalability / dynamism / extensive load-balancing

Minimizes resource usage
Proposes mechanisms to deal with channels that cannot be
handled by only one server
Built on top of an unmodified single-server pub/sub
middleware (Redis)

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Introduction and Background - What is Dynamoth?

Channel-based pub/sub service in the Cloud
For any kind of application, with a specific emphasis on
latency-constrained applications
Can support very large-scale applications
Can support multiple applications simultaneously
Scalability / dynamism / extensive load-balancing
Minimizes resource usage

Proposes mechanisms to deal with channels that cannot be
handled by only one server
Built on top of an unmodified single-server pub/sub
middleware (Redis)

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Introduction and Background - What is Dynamoth?

Channel-based pub/sub service in the Cloud
For any kind of application, with a specific emphasis on
latency-constrained applications
Can support very large-scale applications
Can support multiple applications simultaneously
Scalability / dynamism / extensive load-balancing
Minimizes resource usage
Proposes mechanisms to deal with channels that cannot be
handled by only one server

Built on top of an unmodified single-server pub/sub
middleware (Redis)

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Introduction and Background - What is Dynamoth?

Channel-based pub/sub service in the Cloud
For any kind of application, with a specific emphasis on
latency-constrained applications
Can support very large-scale applications
Can support multiple applications simultaneously
Scalability / dynamism / extensive load-balancing
Minimizes resource usage
Proposes mechanisms to deal with channels that cannot be
handled by only one server
Built on top of an unmodified single-server pub/sub
middleware (Redis)

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Channel-Based Pub/Sub

Subscribers (in blue) subscribe to channels (topics)
Publishers (in red) publish to channels
All subscribers of a given channel c will receive all publications
sent through c

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Channel-Based Pub/Sub

Subscribers (in blue) subscribe to channels (topics)
Publishers (in red) publish to channels
All subscribers of a given channel c will receive all publications
sent through c

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Channel-Based Pub/Sub

Subscribers (in blue) subscribe to channels (topics)
Publishers (in red) publish to channels
All subscribers of a given channel c will receive all publications
sent through c

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Channel-Based Pub/Sub

Subscribers (in blue) subscribe to channels (topics)
Publishers (in red) publish to channels
All subscribers of a given channel c will receive all publications
sent through c

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Applications of Channel-Based Pub/Sub

Traffic alert systems

Mobile device notif. frameworks

Chat/IM systems

Extreme weather alert systems

Social networks

Massive Multiplayer Online Games

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Scaling: Consistent Hashing

Each pub/sub server
assigned a set of virtual
identifiers
Each channel maps to a
virtual identifier (hashing)
Add a new server: some
of the virtual identifiers of
each server get
“transferred” to new server

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Dynamoth - Why?

Addresses the shortcomings of consistent hashing:

1) Channels often have different load

Need a finer-grained channel-to-server approach to provide even
load.

2) Dynamic sizing

Move channels between servers.
Remove/add servers on-the-fly.
Reconfiguration: clients (publishers/subscribers) must be
aware and react to such changes.
During reconfiguration, all messages should still be delivered.

3) Even a single channel can overload a server

We propose channel replication as a way to split the load of a single
channel accross multiple servers.

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Dynamoth - Why?

Addresses the shortcomings of consistent hashing:

1) Channels often have different load

Need a finer-grained channel-to-server approach to provide even
load.

2) Dynamic sizing

Move channels between servers.
Remove/add servers on-the-fly.
Reconfiguration: clients (publishers/subscribers) must be
aware and react to such changes.
During reconfiguration, all messages should still be delivered.

3) Even a single channel can overload a server

We propose channel replication as a way to split the load of a single
channel accross multiple servers.

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Dynamoth - Why?

Addresses the shortcomings of consistent hashing:

1) Channels often have different load

Need a finer-grained channel-to-server approach to provide even
load.

2) Dynamic sizing

Move channels between servers.
Remove/add servers on-the-fly.
Reconfiguration: clients (publishers/subscribers) must be
aware and react to such changes.
During reconfiguration, all messages should still be delivered.

3) Even a single channel can overload a server

We propose channel replication as a way to split the load of a single
channel accross multiple servers.

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Dynamoth Middleware

1 Introduction and Background

2 Dynamoth Middleware
Plan for Publications & Subscriptions
Initial Conditions and Bootstrapping

3 Load Balancing
Load Balancing & Reconfiguration
Adding a new server
Channel Replication
Load Balancing Algorithmic Model

4 Experiments

5 Conclusion & Future Work

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Dynamoth - Plan for Publications and Subscriptions

Initial conditions

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Dynamoth - Plan for Publications and Subscriptions

Subscriptions

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Dynamoth - Plan for Publications and Subscriptions

Subscriptions

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Dynamoth - Plan for Publications and Subscriptions

Publications

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Dynamoth - Plan for Publications and Subscriptions

Publications

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Dynamoth - Plan for Publications and Subscriptions

Publications

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Dynamoth - Plan for Publications and Subscriptions

Publications

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Initial Conditions & Bootstrapping

Initial conditions

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Initial Conditions & Bootstrapping

Subscription: correct server

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Initial Conditions & Bootstrapping

Subscription: correct server

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Initial Conditions & Bootstrapping

Subscription: correct server / client plan update

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Initial Conditions & Bootstrapping

Subscription: incorrect server

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Initial Conditions & Bootstrapping

Subscription: incorrect server

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Initial Conditions & Bootstrapping

Subscription: incorrect server / client plan update

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Initial Conditions & Bootstrapping

Publication: correct server

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Initial Conditions & Bootstrapping

Publication: correct server

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Initial Conditions & Bootstrapping

Publication: incorrect server

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Initial Conditions & Bootstrapping

Publication: incorrect server / forward

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Initial Conditions & Bootstrapping

Publication: incorrect server / client plan update

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Initial Conditions & Bootstrapping

Publication: incorrect server / message delivery

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Initial Conditions & Bootstrapping

Publication: correct server (with updated client plan)

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Initial Conditions & Bootstrapping

Publication: correct server (with updated client plan)

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Load Balancing

1 Introduction and Background

2 Dynamoth Middleware
Plan for Publications & Subscriptions
Initial Conditions and Bootstrapping

3 Load Balancing
Load Balancing & Reconfiguration
Adding a new server
Channel Replication
Load Balancing Algorithmic Model

4 Experiments

5 Conclusion & Future Work

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Load Balancing & Reconfiguration

Initial conditions

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Load Balancing & Reconfiguration

Stats collected by Local Load Analyzer

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Load Balancing & Reconfiguration

Stats sent to Load Balancer

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Load Balancing & Reconfiguration

New Plan generated / forwarded to all servers

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Load Balancing & Reconfiguration

New Plan generated / forwarded to all servers

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Load Balancing & Reconfiguration

New Plan generated / forwarded to all servers

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Load Balancing & Reconfiguration

Introduction of new server S2

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Load Balancing & Reconfiguration

Publication: outdated server

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Load Balancing & Reconfiguration

Publication: delivered and request to update client plans

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Load Balancing & Reconfiguration

Publication: forwarded to H2

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Load Balancing & Reconfiguration

Publication: delivered to S2

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Load Balancing & Reconfiguration

Publication: client plans updated

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Load Balancing & Reconfiguration

Subscribing to new server and unsubscribing from old server

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Load Balancing - Adding a new server

Initial conditions

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Load Balancing - Adding a new server

Initial conditions

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Load Balancing - Adding a new server

Spawning a new server

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Load Balancing - Adding a new server

Generating a new plan

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Load Balancing - Adding a new server

Forwarding new plan to all servers

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Load Balancing - Adding a new server

Forwarding new plan to all servers

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Channel Replication

No replication

Channel T1 is handled by
only one server (H1)
All subscribers and publishers
use H1 for channel T1

What happens if the load
cannot be handled by only
one server?

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Channel Replication

No replication

Channel T1 is handled by
only one server (H1)
All subscribers and publishers
use H1 for channel T1

What happens if the load
cannot be handled by only
one server?

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Channel Replication

Repl.: Too Many Publications
Publishers publish to one server

Subscribers subscribe to all servers

50 100 150 200 250 300 350 400 450 500 550
0

50

100

150

200

250

300
Non-replicated
Too many publications

Number of publications / second

R
e

sp
o

ns
e

 T
im

e

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Channel Replication

Repl.: Too Many Publications
Publishers publish to one server

Subscribers subscribe to all servers

50 100 150 200 250 300 350 400 450 500 550
0

50

100

150

200

250

300
Non-replicated
Too many publications

Number of publications / second

R
e

sp
o

ns
e

 T
im

e

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Channel Replication

Repl.: Too Many Publications
Publishers publish to one server

Subscribers subscribe to all servers

50 100 150 200 250 300 350 400 450 500 550
0

50

100

150

200

250

300
Non-replicated
Too many publications

Number of publications / second

R
e

sp
o

ns
e

 T
im

e

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Channel Replication

Repl.: Too Many Publications
Publishers publish to one server

Subscribers subscribe to all servers

50 100 150 200 250 300 350 400 450 500 550
0

50

100

150

200

250

300
Non-replicated
Too many publications

Number of publications / second

R
e

sp
o

ns
e

 T
im

e

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Channel Replication

Repl.: Too Many Publications
Publishers publish to one server

Subscribers subscribe to all servers

50 100 150 200 250 300 350 400 450 500 550
0

50

100

150

200

250

300
Non-replicated
Too many publications

Number of publications / second

R
e

sp
o

ns
e

 T
im

e

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Channel Replication

Repl.: Too Many Publications
Publishers publish to one server

Subscribers subscribe to all servers

50 100 150 200 250 300 350 400 450 500 550
0

50

100

150

200

250

300
Non-replicated
Too many publications

Number of publications / second

R
e

sp
o

ns
e

 T
im

e

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Channel Replication

Repl.: Too Many Publications
Publishers publish to one server

Subscribers subscribe to all servers

50 100 150 200 250 300 350 400 450 500 550
0

50

100

150

200

250

300
Non-replicated
Too many publications

Number of publications / second

R
e

sp
o

ns
e

 T
im

e

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Channel Replication

Repl.: Too Many Subscribers
Publishers publish to all servers

Subscribers subscribe to one server

0 100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

800

900
Non-replicated
Too many subscribers

Number of subscribers

R
e

sp
o

ns
e

 T
im

e

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Channel Replication

Repl.: Too Many Subscribers
Publishers publish to all servers

Subscribers subscribe to one server

0 100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

800

900
Non-replicated
Too many subscribers

Number of subscribers

R
e

sp
o

ns
e

 T
im

e

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Channel Replication

Repl.: Too Many Subscribers
Publishers publish to all servers

Subscribers subscribe to one server

0 100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

800

900
Non-replicated
Too many subscribers

Number of subscribers

R
e

sp
o

ns
e

 T
im

e

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Channel Replication

Repl.: Too Many Subscribers
Publishers publish to all servers

Subscribers subscribe to one server

0 100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

800

900
Non-replicated
Too many subscribers

Number of subscribers

R
e

sp
o

ns
e

 T
im

e

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Channel Replication

Repl.: Too Many Subscribers
Publishers publish to all servers

Subscribers subscribe to one server

0 100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

800

900
Non-replicated
Too many subscribers

Number of subscribers

R
e

sp
o

ns
e

 T
im

e

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Load Balancing Algorithmic Model

Load Balancing Algorithm Outline:
1 Channel-Level Load Balancing: check whether any channel

should be replicated
1 Too many publishers / too many subscribers / no replication
2 If already replicated: increase / decrease number of replicas?

2 System-Level Load Balancing

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

System-Level Load Balancing

1 Channel-Level Load Balancing
2 System-Level Load Balancing

1 Servers overloaded?

1 Migrate channels until Load Ratio < threshold (80%) for all
servers

2 If needed: spawn additional servers

2 Servers underloaded (if no servers are overloaded)?

1 If overall load < a given threshold: slowly remove channels
from lowest-loaded server

2 When load of lowest-loaded server reaches 0, despawn it

Load Ratio
LRi = Mi/Ti

Mi : measured outgoing bandwidth of server
Ti : maximum outgoing bandwidth supported by the server

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

System-Level Load Balancing

1 Channel-Level Load Balancing
2 System-Level Load Balancing

1 Servers overloaded?
1 Migrate channels until Load Ratio < threshold (80%) for all

servers

2 If needed: spawn additional servers

2 Servers underloaded (if no servers are overloaded)?

1 If overall load < a given threshold: slowly remove channels
from lowest-loaded server

2 When load of lowest-loaded server reaches 0, despawn it

Load Ratio
LRi = Mi/Ti

Mi : measured outgoing bandwidth of server
Ti : maximum outgoing bandwidth supported by the server

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

System-Level Load Balancing

1 Channel-Level Load Balancing
2 System-Level Load Balancing

1 Servers overloaded?
1 Migrate channels until Load Ratio < threshold (80%) for all

servers
2 If needed: spawn additional servers

2 Servers underloaded (if no servers are overloaded)?

1 If overall load < a given threshold: slowly remove channels
from lowest-loaded server

2 When load of lowest-loaded server reaches 0, despawn it

Load Ratio
LRi = Mi/Ti

Mi : measured outgoing bandwidth of server
Ti : maximum outgoing bandwidth supported by the server

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

System-Level Load Balancing

1 Channel-Level Load Balancing
2 System-Level Load Balancing

1 Servers overloaded?
1 Migrate channels until Load Ratio < threshold (80%) for all

servers
2 If needed: spawn additional servers

2 Servers underloaded (if no servers are overloaded)?

1 If overall load < a given threshold: slowly remove channels
from lowest-loaded server

2 When load of lowest-loaded server reaches 0, despawn it

Load Ratio
LRi = Mi/Ti

Mi : measured outgoing bandwidth of server
Ti : maximum outgoing bandwidth supported by the server

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

System-Level Load Balancing

1 Channel-Level Load Balancing
2 System-Level Load Balancing

1 Servers overloaded?
1 Migrate channels until Load Ratio < threshold (80%) for all

servers
2 If needed: spawn additional servers

2 Servers underloaded (if no servers are overloaded)?
1 If overall load < a given threshold: slowly remove channels

from lowest-loaded server

2 When load of lowest-loaded server reaches 0, despawn it

Load Ratio
LRi = Mi/Ti

Mi : measured outgoing bandwidth of server
Ti : maximum outgoing bandwidth supported by the server

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

System-Level Load Balancing

1 Channel-Level Load Balancing
2 System-Level Load Balancing

1 Servers overloaded?
1 Migrate channels until Load Ratio < threshold (80%) for all

servers
2 If needed: spawn additional servers

2 Servers underloaded (if no servers are overloaded)?
1 If overall load < a given threshold: slowly remove channels

from lowest-loaded server
2 When load of lowest-loaded server reaches 0, despawn it

Load Ratio
LRi = Mi/Ti

Mi : measured outgoing bandwidth of server
Ti : maximum outgoing bandwidth supported by the server

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Experiments

1 Introduction and Background

2 Dynamoth Middleware
Plan for Publications & Subscriptions
Initial Conditions and Bootstrapping

3 Load Balancing
Load Balancing & Reconfiguration
Adding a new server
Channel Replication
Load Balancing Algorithmic Model

4 Experiments

5 Conclusion & Future Work

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Implementation & Environnement

Implementation
Built on top of the
McGill’s Mammoth
project
Around 110 Java classes /
10,000 lines of code
Uses unmodified
Open-Source Redis
software for pub/sub
Experiments done over a
simple game (RGame)

Large volume of
subscriptions and
publications

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Experimental Setup

Experimental Setup
McGill School of
Computer Science lab
machines (80)

Pub/sub servers + LLA
Load balancer
Clients - 20 clients per
machine

> 1000 game clients
Latency Emulation using
King Dataset

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Experiment 1 - Channel-level Scalability (Replication)

Too Many Publications

50 100 150 200 250 300 350 400 450 500 550
0

50

100

150

200

250

300
Non-replicated
Too many publications

Number of publications / second

R
e

sp
o

ns
e

 T
im

e

Too Many Subscribers

0 100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

800

900
Non-replicated
Too many subscribers

Number of subscribers

R
e

sp
o

ns
e

 T
im

e

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Experiment 2 - Scalability

Number of Players

.
0 100 200 300 400 500 600

0

200

400

600

800

1000

1200

players

Time (seconds)

N
um

be
r

o
f

pl
a

ye
rs

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Experiment 2 - Scalability

Load Balancing

.
0 100 200 300 400 500 600

0

200

400

600

800

1000

1200

0

1

2

3

4

5

6

7

8

9

players
pub/sub servers (DLB)
pub/sub servers (CH)
DLB: Rebalancing
CH: Rebalancing

Time (seconds)

N
u

m
b

er
 o

f
p

la
ye

rs

N
u

m
b

er
 o

f
p

u
b

/s
u

b
 (

R
ed

is
)

se
rv

er
s

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Experiment 2 - Scalability

Average Response Time

.
0 100 200 300 400 500 600

0

200

400

600

800

1000

1200

0

1

2

3

4

5

6

7

8

9

Dynamoth Load Balancer (DLB)
Consistent Hashing (CH)
players
pub/sub servers (DLB)
pub/sub servers (CH)
DLB: Rebalancing
CH: Rebalancing

Time (seconds)

A
ve

ra
ge

 R
es

po
ns

e
 T

im
e

 (
m

s)
 /

 N
um

be
r

o
f

pl
a

ye
rs

N
um

be
r

o
f

pu
b/

su
b

(R
e

di
s)

 s
e

rv
e

rs

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Conclusion & Future Work

1 Introduction and Background

2 Dynamoth Middleware
Plan for Publications & Subscriptions
Initial Conditions and Bootstrapping

3 Load Balancing
Load Balancing & Reconfiguration
Adding a new server
Channel Replication
Load Balancing Algorithmic Model

4 Experiments

5 Conclusion & Future Work

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Conclusion & Future Work

Conclusion:
Service for scalable topic-based pub/sub in the Cloud
Can handle channels with very high load patterns
Lazy plan propagation
Forwarding to prevent message loss while changing plans
Uses unmodified pub/sub software (ex: Redis)

Future Work:
CPU load in Load Balancing (CPU constrained in Cloud
environments)
Cost model to minimize costs in the Cloud
Reliability & Fault Tolerance
Large-Scale real-time Wide-Area pub/sub support

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Conclusion & Future Work

Conclusion:
Service for scalable topic-based pub/sub in the Cloud
Can handle channels with very high load patterns
Lazy plan propagation
Forwarding to prevent message loss while changing plans
Uses unmodified pub/sub software (ex: Redis)

Future Work:
CPU load in Load Balancing (CPU constrained in Cloud
environments)
Cost model to minimize costs in the Cloud
Reliability & Fault Tolerance
Large-Scale real-time Wide-Area pub/sub support

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Conclusion & Future Work

Thank you for your attention!

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Algorithm 1 - Replication

Determining if replication should be used
begin

Pratio = #publications/#subscribers Sratio =
#subscribers/#publications;
if Pratio > AllSubsthreshold and #publications > Publicationthreshold

then
Nservers = Pratio/AllSubsthreshold;
replicate(ALL_SUBSCRIBERS, Nservers)

end
else if Sratio > AllPubsthreshold and #subscribers > Subscriberthreshold

then
Nservers = Sratio/AllPubsthreshold;
replicate(ALL_PUBLISHERS, Nservers)

end
else

replicate(NO_REPLICATION)
end

end

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Algorithm 2 - High-load plan

Generating a high-load plan
begin

P* = P.copy() while true do
(Hmax ,LRmax) = max(LRi ∀ Hi);
if LRmax < LRhigh then

return P*
end
LRmax = LRmax ;
while LRmax ≥ LRsafe do

(Hmin,LRmin) = min(LRi ∀ Hi);
cout
max = getBusiestChannel(Hmax);
P*.migrate(cout

max , Hmax → Hmin);
LRmax = estimateLR(P∗)

end
end

end

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Experiment 2 - Scalability (4)

Dynamoth Load Balancer - Pub/Sub Server Load

.
0 100 200 300 400 500 600

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

0

1

2

3

4

5

6

7

8

Average Load Ratio
Max Load Ratio
Rebalancing
pub/sub servers

Time (seconds)

Lo
ad

 R
at

io
 (

%
)

N
u

m
b

er
 o

f
p

u
b

/s
u

b
 (

R
ed

is
)

se
rv

er
s

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Experiment 3 - Elasticity (1)

Number of Players & Number of pub/sub Servers

.
0 50 100 150 200 250 300 350 400 450 500

0

100

200

300

400

500

600

700

800

900

0

1

2

3

4

5

6

7

8

9

players
pub/sub servers
Rebalancing

Time (seconds)

N
um

be
r

o
f

P
la

ye
rs

N
um

be
r

o
f

pu
b/

su
b

(R
e

di
s)

 s
e

rv
e

rs

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

Experiment 3 - Elasticity (2)

Avergage Response Time & Outgoing Messages

.
0 50 100 150 200 250 300 350 400 450 500

0

100

200

300

400

500

600

700

800

0

5000

10000

15000

20000

25000

30000

35000

40000

Average Response Time
Total Outgoing Messages
Rebalancing

Time (seconds)

A
ve

ra
ge

 R
e

sp
o

ns
e

 T
im

e
 (

m
s)

To
ta

l O
ut

go
in

g
M

e
ss

a
ge

s
pe

r
S

e
co

nd

Introduction and Background Dynamoth Middleware Load Balancing Experiments Conclusion & Future Work Annex / Extra Slides

References

References for slide Applications of Channel-Based Pub/Sub:

1 http://cdn-parismatch.ladmedia.fr/var/news/storage/images/paris-match/actu/societe/samedi-
rouge-sur-les-routes-de-france-156207/1585652-1-fre-FR/Samedi-rouge-sur-les-routes-de-
France.jpg

2 https://www.drupal.org/files/project-images/gcm-logo.png

3 http://www.memoclic.com/medias/images/contenus/4/1198.jpg

4 http://theloftytraveler.com/wp-content/uploads/2012/03/stormyWeather.jpg

5 https://upload.wikimedia.org/wikipedia/en/thumb/9/9f/Twitter_bird_logo_2012.svg/1267px-
Twitter_bird_logo_2012.svg.png

6 (Own image)

	Introduction and Background
	Dynamoth Middleware
	Plan for Publications & Subscriptions
	Initial Conditions and Bootstrapping

	Load Balancing
	Load Balancing & Reconfiguration
	Adding a new server
	Channel Replication
	Load Balancing Algorithmic Model

	Experiments
	Conclusion & Future Work

