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Abstract—This paper presents Dynamoth, a dynamic, scalable,
channel-based pub/sub middleware targeted at large scale, dis-
tributed and latency constrained systems. Our approach provides
a software layer that balances the load generated by a high
number of publishers, subscribers and messages across multiple,
standard pub/sub servers that can be deployed in the Cloud. In
order to optimize Cloud infrastructure usage, pub/sub servers can
be added or removed as needed. Balancing takes into account the
live characteristics of each channel and is done in an hierarchical
manner across channels (macro) as well as within individual
channels (micro) to maintain acceptable performance and low
latencies despite highly varying conditions. Load monitoring is
performed in an unintrusive way, and rebalancing employs a
lazy approach in order to minimize its temporal impact on
performance while ensuring successful and timely delivery of
all messages. Extensive real-world experiments that illustrate the
practicality of the approach within a massively multiplayer game
setting are presented. Results indicate that with a given number of
servers, Dynamoth was able to handle 60% more simultaneous
clients than the consistent hashing approach, and that it was
properly able to deal with highly varying conditions in the context
of large workloads.

I. INTRODUCTION

The publish-subscribe (pub/sub) concept is an extremely
popular communication paradigm that is used across a wide
range of application domains because it provides an efficient
and elegant way to decouple content producers (publishers)
from content consumers (subscribers). Facebook and Twitter
are two popular world-wide systems that are built upon the
pub/sub paradigm: users produce content (publications) that is
consumed by other users that specify interest in it.

The literature distinguishes between two types of subscrip-
tion languages. In content-based pub/sub, publications are
tagged with a set of attribute/value pairs, and subscriptions
are expressed as predicates over attributes [21]. A publica-
tion matches a subscription if its attribute values satisfy the
subscription predicate. There also exist content-based systems
where subscriptions can be made using elaborate predicates
that are computed directly on the data itself and not only
on attributes of the data [22]. Content-based pub/sub systems
have received plenty of attention in the research community
over the last 15 years, as matching is a challenging task
that is computationally intensive, and difficult to distribute.
Recent efforts have looked at how to provide a scalable cloud-
infrastructure for content-based pub/sub [18], [4], [26].

In contrast, topic-based pub/sub, also referred to as channel-
based communiction, is widely used in industry, and many

open-source or industrial products exist. Conceptually it is
much easier than content-based pub/sub. Users declare interest
in content by submitting subscriptions to specific topics,
also called channels [11]1. Publishers tag their publications
with a channel name, and all users that have subscribed
to that channel receive the message. Implementing a basic
channel-based pub/sub server is simple. Despite its simple
data model, channel-based pub-sub is widely used across
various application domains, such as traffic alert systems,
mobile device notification frameworks (such as Google Cloud
Messaging (GCM) used for sending push notifications to
Android devices), chat/instant messaging systems, extreme
weather alert systems, Twitter, and many more. In this paper,
we use multi-player games as an application example. In these
virtual environments, players declare interest in other players
or in regions of the game, that is, players and regions become
channels; then game events, such as player movement and
player/object interactions, are published on these player or
region channels.

Just as content-based systems, channel-based pub-sub sys-
tems need to be scalable in order to handle large-scale applica-
tions. Furthermore, in order to be cost-effective, cloud-based
solutions need to offer elasticity, making it possible to adapt
the number of pub/sub servers as the workload changes in
terms of number of clients and/or number of messages that
need to be transmitted. Finally, many pub/sub applications
including virtual environments have stringent response time
requirements; thus publications need to be disseminated to the
interested clients as fast as possible, which requires minimiz-
ing the processing time within the pub-sub system as well as
minimizing the number of hops a publication has to take from
the publisher to the subscriber [25].

A common way for load-distribution in channel-based
pub/sub is to distribute the channels across several pub/sub
servers using consistent hashing [5]. With this, each server is
responsible for a set of channels. To determine the distribution,
each server has a set of virtual identifiers, channels are hashed
to the same domain as the identifier space and assigned to the
server with the closest virtual identifier. When a new server
is added, existing servers can give an equal share of their
virtual identifiers and the channels assigned to this identifier
to the new server. Correspondingly, when a server leaves,
it distributes its identifiers/channels to the remaining servers.

1We use the terms channel and channel-based pub/sub throughout the paper.
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Consequently, each server is always responsible for an equal
number of channels. Consistent hashing prevents the need to
re-map all channels when a new server is introduced. However,
consistent hashing has many drawbacks. More specifically,
it can only work under the assumptions that channels are
equally distributed across all virtual identifiers and that the
load on each channel is equal. In real-world applications, these
assumptions do not necessarily hold.

In this paper we present Dynamoth, a scalable, elastic cloud-
based channel-based middleware that supports any number of
publishers, subscribers and publications. We aim at supporting
any application making use of channel-based pub/sub with a
specific emphasis on applications that require strict latency
bounds. In order to reach our scalability goals, instead of re-
lying on consistent hashing, Dynamoth proposes a hierarchical
load balancer that operates (1) at the system-level (macro load
balancing) and (2) at the channel-level (micro load balancing).

At the system-level, Dynamoth proposes a dynamic mecha-
nism to distribute channels across multiple pub/sub servers.
Whenever the popularity of some channels changes, new
channels are introduced or channels are removed, Dynamoth
dynamically adjusts the load on individual servers. Further-
more, when the total load increases or drops significantly,
Dynamoth automatically adds or removes pub/sub servers by
spawning/despawing nodes in the Cloud to optimize Cloud
infrastructure-associated costs.

At the channel-level, Dynamoth is capable of handling cases
where specific channels have extremely high load, possibly
orders of magnitude larger than other channels. Such situations
can happen if a channel has a very large number of publishers,
subscribers and/or publications.

In summary, this paper provides the following contributions:
• We provide a scalable channel-based pub/sub infras-

tructure where channels are distributed across many
pub/sub servers. Clients are made aware of the channel
assignments so that they can send their publications and
subscriptions to the correct pub/sub servers, leading to
low latency as no indirections occur.

• Our approach provides load-balancing and elasticity at
the system-level. Channel assignments can change, and
servers can be added or removed from the configuration
on the fly as the workload patterns change. Reconfigura-
tions do not interrupt message processing, and messages
are guaranteed to be received by all subscribers despite
the reconfiguration.

• Our approach provides load-balancing and elasticity at
the channel-level. Highly-loaded channels can be repli-
cated across several pub/sub servers in order to avoid
overload or response time violations.

• We have implemented Dynamoth on top of an existing
open-source pub/sub system, namely Redis, without any
changes to Redis itself. Thus, we can take advantage of
an already existing, highly-optimized pub/sub system. We
believe that the concepts presented in this paper could be
implemented on top of other pub/sub systems, as long as
they offer the standard pub/sub interface.

We have evaluated the performance of Dynamoth by con-
ducting extensive experiments over a massively multiplayer

Figure 1: Overview of the Dynamoth Architecture

game application, showing that it performs significantly better
than consistent hashing, and that it is able to adapt quickly to
complex workloads that continuously change. Notably:

• Our experiments on a large-scale game application re-
vealed that Dynamoth was able to handle 60% more si-
multaneously active players with the same set of pub/sub
servers than consistent hashing.

• Our experiments revealed that Dynamoth was properly
able to handle large-scale workloads that were subject to
high variation over time, while minimizing the number
of required pub/sub servers, and keeping average latency
low.

The remainder of the paper is structured as follows: section
II describes the architectural design of Dynamoth; section III
describes how Dynamoth is able to perform load balancing in
order to scale; section IV describes the mechanism by which
Dynamoth is able to reconfigure itself without impacting
performance; section V describes the implementation and the
experiments that have been run and section VI discusses other
approaches in the literature.

II. DYNAMOTH MIDDLEWARE

A. Architecture

The Dynamoth architecture is depicted in Figure 1. The
core of the system is a set of standard, independent pub/sub
servers (Pub1 to Pub3 in the figure) that handle message
dissemination between all clients. In our implementation, we
use Redis2, but it should be simple to replace Redis by any
other pub/sub middleware with a standard API.

In our approach, we deploy on each node in the Cloud a
standard pub/sub server and two further components, a local
load analyzer (LLA) coupled with a dispatcher (D). The local
load analyzer performs real-time monitoring of the load on the
pub/sub server. The dispatcher module is needed during system
reconfiguration to guarantee that messages are forwarded to all
subscribers.

2http://redis.io/
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(a) No Replication (b) All-Subscribers Repl. (c) All-Publishers Repl.

Figure 2: Channel Replication Strategies

There exists one load balancer node in the cluster that
gathers input from all the local load analyzers and aggregates
all the metrics. It determines if a configuration change is
needed (e.g. whether some pub/sub server is overloaded). If
this is the case, it determines how to balance the load in
the system. To this aim, Dynamoth proposes the concept of
a plan, which is used to resolve to which pub/sub server a
given publication or subscription should be sent to. The plan
is a more elaborate version of a lookup table where the keys
are the channels (topics) and the values are the list of servers
that should be used for each channel. Whenever a new plan
is generated, it is propagated to the dispatchers located on
the pub/sub server nodes. The dispatchers need this plan to
ensure that all messages are forwarded to all subscribers during
reconfiguration.

Clients interact with the system through the Dynamoth
client library. The client library exposes a standard pub/sub
API. In our implementation, it is identical to the original Redis
API. The Dynamoth client library uses a client-specific plan to
determine to which of the pub/sub servers to send publications
and subscriptions to. The actual sending of messages is done
using the standard Redis client library.

B. Mapping Channels to Pub/Sub Servers

We support three approaches of how to assign channels to
pub/sub servers (see Figure 2). In the figure, we consider a
channel c, a set of publishers (P-nodes) that will be publishing
to c, a set of subscribers (S-nodes) that will be receiving
publications flowing through c (subscribers of c) and a set
of pub/sub servers (H-nodes) that will be used to route
publications from the publishers to the subscribers.

In most cases, a channel c is assigned to one pub/sub server
H, and clients send subscription requests and publications for
channel c to H (figure 2a). This single-server mapping will
work for most channels.

However, in some scenarios, the number of subscribers,
publishers and/or publications on a given channel c might
be too large for only one pub/sub server. For instance, if a
given channel c has a very large number of subscribers, then
this might lead to too many simultaneous connections on the
pub/sub servers. This can also lead to important increases in
the message processing delay since the pub/sub server has
to send the same messages to all subscribers at the same
time. If c has too many publications, then this could cause
too many messages to flow on c, thus potentially overloading

the pub/sub server (even if the server is in charge of that
sole channel), or overflowing individual connections between
the pub/sub server and a subscriber. To address the require-
ments of such heavy-load channels, Dynamoth performs load-
balancing at the channel-level by allowing for more than one
pub/sub server to map to any given channel. We refer to
this as channel replication. Dynamoth proposes two channel
replication approaches depending on the overload situation. In
both approaches, several pub/sub servers are responsible for
the channel. But they differ in the way subscribers subscribe
to the channel and how publishers publish their messages.
In both cases, it is important that all subscribers receive all
publications regardless of which pub/sub server has been used
to process the publication.

1) All-Subscribers Replication: With all-subscribers repli-
cation, all subscribers send their subscription requests for c
to all the pub/sub servers responsible for c while publishers
send their message for c to only one of the servers responsible
for c. In Figure 2b, the three servers H1, H2 and H3 can be
used to process publications flowing through c; each publisher
sends its publications through a random server (in this case, P1

publishes to H2 and P2 publishes to H3) and all subscribers
have subscriptions to c on all servers H1, H2 and H3 thus
making sure that whichever server is used, all subscribers
receive all publications. This replication scheme is relevant
if there is a very high number of publishers and/or messages
to be transmitted on c but the number of subscribers is within
the limit of what a single pub/sub server can handle in terms
of connections. An example from gaming could be a channel
which is used by clients to send position updates within a
region of a virtual world. The publishers are the players that
control avatars located in the region, publishing position and
state updates at a high frequency. The subscribers are the
game servers responsible, for example, to perform interest
management for the region. With all-subscribers replication,
a player chooses a random pub/sub server for its publications,
thus distributing the high message load over several servers.

2) All-Publishers Replication: With all-publishers Replica-
tion, a subscriber subscribes to only one of the pub/sub servers
in charge of c, while publishers send their publications to all
servers. In Figure 2c, once again all three servers H1, H2

and H3 can be used to process publications flowing through
c. Each publisher sends its publications to all servers, which
requires sending n messages (n being the number of pub/sub
servers that handle c), while each subscriber subscribes to c
on one specific pub/sub server, and thus, receives the message
once. This replication scheme is relevant if there is a very
high number of subscribers for channel c, but a relatively low
number of messages, because each publication message is sent
n times. An example from gaming could be some form of
broadcast channel through which a game server communicates
some world-wide events that are of interest to all players.
Without replication, a single pub/sub server might take a
long time to disseminate such a publication to all subscribers,
violating response time requirements. In contrast, when the
message is sent to many pub/sub servers, the pub/sub servers
can forward the message in parallel to the many subscribers.
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C. Bootstrapping and Initial Conditions

Initially, a Dynamoth system contains a set of one or more
pub/sub servers and an initial global plan (“plan 0”) which
does not provide any specific channel mapping. When a plan
does not contain mapping information for a channel (at startup
and whenever new channels are dynamically created), it uses a
consistent hashing algorithm to map the channel to a pub/sub
server. Over time, the plan is updated when channels are
assigned to pub/sub servers because of load balancing and
channel replication. All dispatchers on the pub/sub server
nodes have a copy of the complete current global plan.

Each client C maintains a client-specific partial plan P (C),
subsequently called local plan. At connection time it is empty
and C uses consistent hashing to determine to which server to
send subscriptions and publications for a given channel c. If
the local plan is out of date and as a result an incorrect server
is chosen, the server ensures that the subscription/publication
reaches the correct server. Furthermore, it informs the client
about the correct pub/sub server. Thus, over time, C updates
its plan P (C) with the correct channel/server assignments.
Similarly, whenever the global plan changes, C is informed in
this lazy manner. However, at any time P (C) only contains in-
formation about channels that the client actually uses. Assum-
ing that in large-scale settings, each client only interacts with
a small subset of all channels, this approach keeps the plan
information at the client side as small as possible. Minimizing
the local plan size also enables the middleware to support
multiple applications concurrently (in a gaming context, that
could be many independent instances of a multiplayer game).
Exactly how client plans are updated over time and during
reconfiguration is described in section III-B.

III. LOAD MONITORING AND PLAN GENERATION

To perform load balancing and create new plans, Dynamoth
must know the current load on all pub/sub servers. Moreover,
it must estimate as precisely as possible the load distribution
that will be obtained after the rebalancing occurs based on the
current load. Our framework is able to accurately monitor and
measure the load for every channel, on every pub/sub server,
with minimal overhead, without the need to alter the pub/sub
server software (Redis in our case).

A. Load Monitoring: Local Load Analyzers

To enable load monitoring, each node that runs a pub/sub
server also runs a local load analyzer (LLA). The role of the
LLA is to continuously gather extensive load metrics for every
channel managed by the pub/sub server. The recorded metrics
for every time unit t (t is one second in our experiments)
include the number and list of publishers, the number of
publications, the number and list of subscribers, the number
of sent messages, and the incoming and outgoing number of
bytes transmitted.

The LLA is notified when the pub/sub server receives new
subscriptions and unsubscriptions. This allows the LLA to
discover new channels and keep track of the subscribers. In
order to collect all metrics, the LLA registers as an “observer”
to every channel hosted onto the local pub/sub server, and

therefore receives a copy of every publication. The fact that the
LLA runs locally on the same machine as the pub/sub server
greatly reduces communication overhead and does not use any
local bandwidth. Our empirical observations showed that: (1)
running the LLA module had very limited CPU overhead and
(2) the outgoing bandwidth of the pub/sub servers got saturated
much more quickly than the CPU. This second observation
can be explained by the fact that most publications will be
sent to many subscribers. Therefore, our rebalancing algorithm
doesn’t take CPU load and incoming bandwidth into account
since through our experiments, they were not a limiting factor,
except for some specific cases where there is a huge amount
of subscribers for a given channel and a significant amount of
publications. This can lead to high CPU usage and is handled
by using channel replication.

All LLAs send an aggregate update message at a predefined
interval to the Load Balancer node. This message contains
all metrics for all channels for all time units ti since the
transmission of the last update message, as well as additional
information such as the theoretical maximum outgoing band-
width supported by that server node, as well as the measured
outgoing bandwidth on the network interface.

B. Generating a New Plan

Upon receiving the metrics from all Local Load Analyzers
(LLAs) for every time unit t, the Dynamoth load balancer
(LB) first computes the load ratio for all pub/sub servers. The
load ratio LRi for a given server i is defined as the measured
outgoing bandwidth Mi divided by the maximum outgoing
bandwidth supported by the server Ti (eq. 1).

LRi = Mi/Ti (1)

The LB then decides if a new plan should be generated or
if the current plan should be kept. New plans are generated
only after at least Twait time units have elapsed since the last
plan generation to make sure that most of the configuration
overhead of the last plan change is completed before the next
one is triggered. A new plan is generated using the Dynamoth
rebalancer module in a two-step process: (1) channel-level
rebalancing and (2) system-level rebalancing.

1) Channel-level Rebalancing: In this step, the LB checks
the number of publishers, subscribers and publications on
each channel and determines whether some channels could
benefit from replication (all subscribers or all publishers).
Algorithm 1 outlines how the LB determines whether any
given channel should use any of the replication schemes. The
first step involves computing the publication-to-subscribers
ratio (Pratio) and checking whether this ratio is above a given
threshold. We also check whether we have a minimum amount
of publications before triggering replication, since replication
makes sense in cases where a given channel uses significant
resources that cannot be managed by one pub/sub server. If
both conditions are true, then the all-subscribers replication
scheme will be used. The number of servers Nservers that
should be used is then computed (line 5), and all subscribers
will connect to all Nservers servers. A similar approach is used
to determine if the all-publishers scheme should be enabled
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instead (lines 3;8-10) and decide on the number of servers.
At this step, we ensure that we have a minimum amount
of subscribers to make sure that replication is relevant. If
the conditions regarding all-subscribers and all-publishers are
not met, then replication is not used for this channel (or is
cancelled if it was active).

One corner case is the case where the amount of publica-
tions and subscribers are both very large (not shown in our
algorithm due to space constrainsts); our system will then
use the all-subscribers scheme since the all-publishers scheme
causes publications to be sent to all pub/sub servers, which is
more costly.

Upon enabling a given replication scheme for a given
channel or if replication is already enabled for this channel
but the LB determines that additional servers should be used
(Pratio or Sratio increases), the load balancer selects the least-
loaded servers first. Similarly, if replication servers need to
be freed (the LB determines that replication is not needed
anymore or that the number of servers can be reduced), then
the busiest servers will be freed first.

1 begin
2 Pratio = #publications/#subscribers;
3 Sratio = #subscribers/#publications;
4 if Pratio > AllSubsthreshold and

#publications > Publicationthreshold then
5 Nservers = Pratio/AllSubsthreshold;
6 replicate(ALL_SUBSCRIBERS, Nservers);
7 end
8 else if Sratio > AllPubsthreshold and

#subscribers > Subscriberthreshold then
9 Nservers = Sratio/AllPubsthreshold;

10 replicate(ALL_PUBLISHERS, Nservers);
11 end
12 else
13 replicate(NO_REPLICATION);
14 end
15 end

Algorithm 1: Determining if replication should be used

2) System-level Rebalancing: In this step, the LB analyzes
the load on each pub/sub server. In general, Dynamoth can
perform two types of load rebalancings: (1) a high-load rebal-
ancing, which is needed when one or more pub/sub servers
are overloaded in order to bring the load down, and (2) a
low-load rebalancing, which takes place in the case where
one or more pub/sub servers are underloaded in order to free
servers that are not required anymore with the ultimate goal of
shutting them down. Because pub/sub servers are most likely
deployed in the Cloud, the LB aims at being efficient regarding
the number of servers that need to be used in order to save
costs, while maintaining adequate performance. The two next
subsections explain our current LB algorithms for high-load
and low-load rebalancing. In real commercial systems, more
elaborate heuristics could be used.

3) High-Load Rebalancing: If there ia a pub/sub server Hi

with a load ratio LRi that exceeds a given threshold LRhigh,
then a new high-load plan P∗ must be generated so that P∗

ensures that the load returns below a safe threshold for all
servers. If this is not possible, then one or more additional
servers have to be rented from the Cloud.

Algorithm 2 describes our heuristic for generating a plan to
reduce the load on overloaded servers. The algorithm repeats
as long as there is at least one pub/sub server with an estimated
load ratio above LRhigh . The pub/sub server with the highest
load ratio (Hmax with load ratio LRmax) is selected. Then,
as long as the estimated load ratio LRmax remains above a
certain threshold LRsafe, we do the following: (1) obtain the
pub/sub server with the lowest load ratio (Hmin with load
ratio LRmin); (2) obtain the busiest channel coutmax on Hmax;
(3) migrate this channel from Hmax to Hmin in the new plan
P∗, and (4) estimate the load ratio LRmax (on Hmax) that we
would get if P∗ was applied. Of course, the estimated load
on the server that receives the channel will be recalcuated as
well to make sure that we do not overload that server.

1 begin
2 P* = P.copy();
3 while true do
4 (Hmax,LRmax) = max(LRi ∀ Hi);
5 if LRmax < LRhigh then
6 return P*;
7 end
8 LRmax = LRmax;
9 while LRmax ≥ LRsafe do

10 (Hmin,LRmin) = min(LRi ∀ Hi);
11 coutmax = getBusiestChannel(Hmax);
12 P*.migrate(coutmax, Hmax → Hmin);
13 LRmax = estimateLR(P∗);
14 end
15 end
16 end

Algorithm 2: Generating a new high-load plan

4) Low-Load Rebalancing: If the global load ratio (aver-
aged LRi for all pub/sub servers i) is below a given threshold,
then one or more servers can be freed. This operation is less
critical for performance reasons, but nevertheless essential
for cost saving purposes. Channels from the lowest loaded
server are slowly migrated to the other servers as long as the
load on the other servers stays below a given limit. When a
server has no more channels, it is deallocated. If at any point
the global load ratio increases such that it becomes higher
than the low-load threshold, then the low-load rebalancing
will be interrupted (and, if needed, a high-load rebalancing
can be triggered). Due to space constraints, the detailed low-
load rebalancing algorithm, similar in spirit to the high-load
rebalancing algorithm, is not presented in the paper.

For all algorithms, the values of the various threshold pa-
rameters were determined empirically based on the capabilities
of the machines at our disposal. Of course, with different
hardware, those values would most likely need to be adjusted.
In future work, one could explore the idea of having a
mechanism to automatically set and update thresholds based
on real-time conditions.
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IV. RECONFIGURATION

Upon determining that a new global plan P∗ should be
applied, all stakeholders need to be informed. However, send-
ing a new global plan to all clients at reconfiguration time
would create a huge message overhead. Furthermore, global
plans contain information about all channels, while individual
clients are likely only interested in a few of these channels
and therefore should only receive partial plan information
on a need-to-know basis. Thus, we use a lazy scheme. At
connection time, clients use consistent hashing to determine
pub/sub servers and get to know the true location for a
channel only when they actually send their first message for
this channel. Similarly at reconfiguration time, their partial
plans are only updated on a need-to-know basis using a lazy
propagation technique.

For this to work and to not loose any subscriptions and
publications that are sent to the wrong pub/sub servers, the
servers must be able to handle wrongly addressed messages.

Initialization: Whenever a client does not have any
server information about a channel, it sends the publica-
tion/subscription request to the server determined by consistent
hashing. If this is not the correct server, the server sends a
message back to the client informing it about the correct server.
The client updates its local plan and then sends the message
to the correct server.

Subscriber Change: Whenever a plan change moves a
channel c from server H0 to server H1, all subscribers need to
be informed and move their subscriptions from H0 to H1. We
don’t do this immediately for all channels, because this could
lead to a spike of unsubscriptions and subscriptions at the time
of reconfiguration, possibly causing performance bottlenecks.
In order to stagger the reconfiguration of channels, we notify
subscribers of the switch of channel c together with the first
publication on c after the plan changes.

Publishing on old server: Furthermore, publishers are also
not informed immediately. In fact, in our system, there is
actually no central authority that would know the content
of the local plans of the clients, as they all are maintained
individually by the clients themselves. Instead, when a channel
c has moved from server H0 to H1, and H0 receives a
publication message on c, it informs the publisher about the
change, so it can update its plan and send its next message
to the correct server. At that time, both H0 and H1 might
have subscribers for c, as some but not all of the subscribers
might have updated their subscriptions by then. Therefore, H0

forwards the message to all subscribers of c still connected to
it, and also sends the publication to H1 so that it can deliver
the message to all subscribers of c already connected to H1.

Publishing on the new server: Finally, a publisher might
already know the new location of c and send a publication
for c to H1 while there are still some subscribers connected
to H0. Therefore, H1 forwards the publication not only to its
local subscribers but also to H0 so that it can disseminate it to
the subscribers still connected to H0. Such forwarding needs
to occur until H0 does not have any subscribers anymore.

For replicated channels, reconfiguration is more complicated
as there are multiple pub/sub servers that are in charge of

publications and subscriptions for a given channel. But in
principle, it follows the same line of reasoning as described
above. For space reasons, we cannot describe the details but
refer to [13].

A. Reconfiguration Details

A challenge in our system is that we rely on ready-
to-use pub/sub servers that cannot be modified. Thus, the
forwarding functionality is implemented in the dispatchers that
are collocated on the pub/sub server nodes as described in the
following subsection and illustrated in figure 3.

1) Reconfiguration Setup: Each dispatcher has connections
to all other pub/sub servers in order to be able to forward
messages. Whenever a new global plan P* is created, the
LB sends it reliably to all dispatchers. Upon receiving a new
plan P* such that server H0 was responsible for channel
c in the old plan and server H1 in the new plan P*, the
dispatchers of both H0 and H1 subscribe locally to channel
c to receive all publications. Furthermore, the dispatchers
intercept subscription and unsubscription requests submitted
to their local pub/sub servers.

2) Incorrect Pub/Sub Server: Figure 3a illustrates by exam-
ple what happens if a publication message m on channel c goes
to an incorrect pub/sub server H0 (step 1). The publication is
first sent to the subscribers still using H0 for c (C2 in our
example). As the dispatcher D0 is also subscribed to c, it also
receives the publication. If this was the first publication on c
after the new plan P∗ was received, D0 publishes a <switch
to H1> message to c on H0 in order to ask all subscribers
to switch to H1. H0 then forwards this switch message to all
subscribers, who then update their local plan and transfer their
subscription to H1 (steps 6, 7 and 8). D0 also publishes the
original publication to c on the new server (H1) which delivers
it to its own subscribers, if any (steps 3, 4 and 5). Note that
some steps might execute concurrently (steps 2 and 3, or steps
4 and 6 for example).

3) Correct Pub/Sub Server: The case where a publication
m on c is sent to the correct pub/sub server H1 is much simpler
(step 1 in figure 3b). H1 delivers it to local subscriber C2 (step
2). D1 also receives m, and publishes m to c on the old server
H0 (steps 3 and 4). Finally, H0 delivers m to C1. Note that
there might be a client who has already subscribed to c on
H1 but not yet unsubscribed from H0. This client receives the
message twice. Our client library ensures that each message
is only delivered once. For that, we use the standard approach
of globally unique message identifiers.

4) Client Subscribing and Moving a Subscription: If a
client has outdated plan information for a channel c (using
consistent hashing or having an outdated plan), then this
client might send a subscription request for c to an incorrect
server H0. The dispatcher for H0 then notifies the client
that it subscribed to c on an incorrect server. Upon receiving
such a message, the client immediately updates its local plan,
subscribes to c on H1 and unsubscribes from c on H0. The
same process is used when a client is asked to move an existing
subscription: it subscribes to the channel on the new server and
unsubscribes from the same channel on the old one.
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5) Duration of Forwarding and Dispatcher Subscriptions:
The question arises how long dispatchers should subscribe to
channels and forward messages.

The dispatcher on H1 must forward messages it receives
for c to H0 as long as there are still clients that are subscribed
to H0 instead of H1. Thus, in order to avoid unnecessary
forwarding, the dispatcher on H0 notifies the dispatcher on
H1 as soon as there are no subscribers for c on H0 anymore.
The dispatcher on H1 then stops forwarding messages.

The dispatcher on H0 forwards to H1 messages for c
it receives from publishers that don’t know yet about the
switch. In principle, it could simply send to the publisher the
information about the new server H1, and the publisher could
then republish the message on H1. However, for performance
and cost reasons, H0 forwards the message directly to H1,
because this communication happens inside the Cloud. Over
time, there will be less and less publishers that publish on the
wrong pub/sub server (H0). To avoid that the dispatcher on
H0 must be subscribed to c forever, we employ a timeout
mechanism. Each client associates with each channel c in
the local plan a timer. The timer is reset whenever the client
sends or receives a publication on this channel, or when the
server for this channel changes. When the timer expires and
the client is not subscribed to the channel, then the client
removes c’s entry from the plan. Should it later try to subscribe
to c or send a publication to c, it connects to the server
that is determined through consistent hashing (just like during
startup). The dispatcher on H0 uses the same timer. It sets
the timer for c when a new plan moves c from H0 to another
server H1. It stops listening to c and forwarding messages to
H1 when the timer expires, because at this time no client has
the outdated information for c anymore.

The dispatcher of the server Hc, i.e., the server for a channel
c determined by consistent hashing, is always subscribed
locally to c. Thus, it can determine when publications for c
are sent erroneously to Hc and let the senders know the real
server that is responsible for c. With this, whenever a client
sends a message to the wrong server (be it a server based on
an outdated plan or the server determined through consistent
hashing), the dispatcher on that server receives the message
and informs the client about the reconfiguration.

V. EXPERIMENTS

A. Implementation

Our Dynamoth implementation is highly modular and con-
sists of around 110 Java classes and 10,000 lines of code.
All Dynamoth components and algorithms are implemented as
described in the paper. All inter-component communications
are done using the pub/sub primitives offered by the Dynamoth
API. The dispatcher and local load analyzer modules reuse the
pub/sub interface, and standard Redis instances are used as the
pub/sub servers. They are independent and do not communi-
cate with each other. Because of this, any individual Redis
instance can be replaced with any other pub/sub middleware
as long as it support the basic pub/sub primitives.

As application we use a muliplayer online game (MOG)
application. Mammoth [16] is a game engine for MOG that

(a) Incorrect Server H0 (b) Correct Server H1

Figure 3: Handling Publications during Reconfiguration

was developed at McGill University as a testing and research
framework. Researchers are able to use the system to conduct
all kinds of experiments related to MOG games in a realistic
environment. Mammoth has a very modular architecture that
allows easy replacement of components. One such component
is the network infrastructure, which handles the transmission
of all messages among all nodes. Mammoth requires the
network engine to provide a channel-based pub/sub API as
messages to updated players, messages to send replicas to
clients and general broadcast messages by the server are sent
using the pub/sub paradigm. Thus, we used Dynamoth as the
network engine for Mammoth. For our experiments we used a
specific sub-game within Mammoth, RGame, in which players
are controlled by a simple AI that repeatedly chooses a random
point on the map, moves the player towards that point and then
takes a short break. The game world is split into a set of square
tiles. Players subscribe to the tile in which they are located
in, and publish their own state updates on the tile. Thus,
all players receive update messages from all other players
in the same tile. As players continuously move around, this
application generates many subscriptions and unsubscriptions
to tiles, and update position publications on these same tiles.

B. Experimental Setup

All experiments were conducted on 80 machines of the labs
of the School of Computer Science of the McGill University
over which we distributed client and server nodes. While each
pub/sub server node received exclusive access to one of the lab
machines, clients had to share machines in order to provide
scalability results. All lab machines have dual or quad-core
processors and at least 4 GB of RAM. Both client and server
nodes were run in the same LAN. In order to emulate a typical
Cloud setup, where the pub/sub server nodes would run in
the Cloud connected by a LAN and the clients access the
servers over a WAN, we adjusted our latency measurements
using the King dataset [14] (a study that gathered millions
of latency measurements between arbitrary DNS servers). We
filtered the dataset to keep only measurements from North
America. For each inbound publication message, we do the
following: (1) if the publication comes from an infrastructure
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Figure 4: Replication Experiments

node3 and goes to a client node, then we sample one value
from the dataset; (2) if the publication comes from a client
node and is received by an infrastructure node, then we sample
one value and (3) if the publication comes from a client
node and is received by another client node, then we sample
two values (round-trip). Each message received by the Redis
middleware is put in a queue and is delivered to the application
layer only after a timer corresponding to the sampled latency
value(s) expires. Our experiments revealed that this delaying
mechanism produced latency measurements comparable to
what we could expect from running our infrastructure servers
in the Cloud.

C. Experiment 1: Channel-level Scalability

We first assessed the scalability of the channel-level (micro)
load-balancing capabilities of Dynamoth by running experi-
ments with both replication schemes proposed by Dynamoth:
“all publishers” and “all subscribers”. For that, we run a set of
micro-benchmarks that focus on specific overloaded channels.

1) All Publishers: In this experiment, we connected up to
800 subscribers to a given channel c. In our setup we ran
10 subscribers per machine. One publisher client sends 10
publication per second on channel c. This experiment was first
attempted with replication disabled (only one pub/sub server
was handling channel c) and then with replication enabled
over 3 servers (3 pub/sub servers were in charge of server
c). Under the “all publishers” model and under the replicated
configuration, the publisher was sending its publications to all
3 servers and every subscriber was randomly subscribing to c
on one of the 3 servers. Figure 4a details response time results.

We observe that with 100 subscribers, both the non-
replicated and the replicated configurations yield similar re-
sponse times. Then, as the number of subscribers grows, the
response time for the non-replicated configuration continu-
ously increases. This is explained by the fact that sending the
message to a large volume of subscribers takes more time if it
is done only by one server. Finally, above 500 subscribers, the
CPU is not able to process the flow of publications anymore
and the performance decreases exponentially. Using 3-server

3A node that would be usually located in the Cloud: Local Load Analyzer,
Dispatcher or Load Balancer

replication, the response times remain very low. This is due
to the fact that each server only needs to process and forward
publications to a 1/3 of subscribers. Thus, our all-publishers
replication mechanism allows our system to scale properly in
situations where there would be many subscribers on a given
channel.

2) All Subscribers: We attempted to connect up to 800
publishers sending 10 publications per second each on a
given channel c and only one subscriber. This experiment
was ran with replication disabled and with replication enabled
with 3 servers under the “all subscribers” model. Under this
configuration, the subscriber was subscribing to c on all 3
servers and all publishers were publishing randomly to one of
the 3 servers. Figure 4b details the response time results.

We observed that under the non-replicated configuration, we
are able to support up to 200 publishers. After that, delivery
of messages fails because the output buffer for the subscriber
gets too full due to the high volume of publications. Under
the replicated configuration, we are able to safely support
nearly up to 600 publishers because each server processes
only 1/3 of the publications. This demonstrates that our all-
subscribers replication mechanism allows our middleware to
scale to support scenarios where there are large amounts of
publications.

D. Experiment 2: Scalability

This experiments aims at evaluating the scalability of our
Dynamoth architecture and the effectiveness of our load bal-
ancer in the context of a large-scale latency-constrained game
application. At start of the experiment some 120 players are
active in the game and over time more and more players
join the game increasing the load in the system. Overall,
we attempted to connect up to 1200 clients; once joined,
each player sends 3 state updates (publications) per second.
Up to 8 Redis pub/sub servers were available. We ran this
experiment with our Dynamoth load balancer and we ran
the same experiment again using only consistent hashing, the
standard load balancing technique.

Figure 5 details our results for experiment 2. In all sub-
figures, the time is shown on the X-axis (in seconds). Figure
5a plots the number of players active in the system over time
showing how the players slowly join the game. Figure 5b plots
the total number of messages transmitted per second through-
out the whole system over time, as well as the number of Redis
pub/sub servers (between 1 and 8) that were currently active,
for both the Dynamoth and consistent hashing experiments.
Finally, Figure 5c plots the average response time experienced
by clients over time (the time that elapses between the client
publishing a state update and receiving the corresponding
notification back from the pub/sub server). The diamonds and
circles indicate the times where the load balancer triggered a
reconfiguration respectively for the Dynamoth and consistent
hashing approaches. In the context of a game, the playing
quality will be optimal if the average response time remains
below 150ms.

By using multiple Redis pub/sub servers, Dynamoth scales
up to almost 1000 participants. We observe small spikes in
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Figure 5: Client Scalability Results
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Figure 6: Dynamoth Load Balancer - Pub/Sub Server Load

the average response time around the time when new server is
added and rebalancing takes place occurs, but those bursts are
only of short duration and the average response time is oth-
erwise always maintained at an acceptable threshold (around
75ms). The bursts happen because the application of the new
plan occurs at a time the servers are already overloaded, further
increasing the load for a short amount of time, leading to an
additional delivery delay for some messages. However, our
lazy plan propagation approach keeps this impact of plan
changes very low, as explained in section IV. The results
further show that our load balancer is conservative and first
reuses the pool of active servers before deciding to spawn new
servers. This keeps Cloud utilization costs low. Furthermore,
even after the 8th and final server is deployed, the load
balancer is still able to maintain an acceptable performance
level for a while by applying incremental plan changes.

With consistent hashing, only up to 625 players can be
supported before performance deteriorates. This is due to the
fact that consistent hashing can not take individual server
loads into account when a rebalancing occurs. Servers shed
1/N of their load to a newly deployed server, irrespective
of their current load. As a result, highly loaded servers do
not loose significant load and tend to overload again soon.
Furthermore, this technique has to spawn a new server every
time a rebalancing occurs, which is not cost efficient in a
Cloud setting.

For that same experiment with Dynamoth, figure 6 plots the
average load ratio (equation 1) of all active pub/sub servers, the
load ratio of the busiest server as well as the number of Redis
servers and the time points when a rebalancing occured. A
load ratio of 1 or below is safe. According to our observations,
a Redis pub/sub server will fail when the load ratio exceeds
1.15. We can see that our load balancer is able to maintain
the average load below 1 until the system as a whole becomes
overloaded. It is also able to maintain the load ratio of the
busiest server below 1 for most of the experiment.

E. Experiment 3: Elasticity

In this experiment, we show how the Dynamoth load bal-
ancer handles fluctuating real-time conditions. We first inject
step by step 800 clients into the virtual environment; then we
remove 600 (to reach 200); then we connect a little less than
400 additional clients (to reach almost 600). Figure 7 shows
the measurements gathered during this experiment. Figure 7a
shows the number of players as well as the number of Redis
pub/sub servers that were being used at a given time. Figure
7b shows the average response time and number of outgoing
messages over time. In both figures, the points in time where
the Dynamoth load balancer triggered a rebalancing are de-
noted by a diamond.

We observe that as the number of clients increases, rebal-
ancings occur, which sometimes require the addition of new
servers. When the number of clients decreases, rebalancings
also occur and are able to release servers again to save
Cloud infrastructure costs. Since those rebalancings have a
lower priority, there is an observable delay between the time
when the load decreases and the servers are removed. As in
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Figure 7: Handling a Varying Number of Players

the previous experiment, when high-load rebalancings occur,
we observe small spikes in average latencies as rebalancing
adds additional load to already loaded servers. When scaling
down, rebalancings do not cause spikes in average latencies
because such rebalancings only occur when pub/sub servers
are underloaded.

Overall, this experiment reveals that Dynamoth is correctly
able to handle fluctuating workload patterns by providing
adequate resources as needed.

VI. RELATED WORK

There exists a vast literature on scalable pub/sub systems
as well as a range of commercial pub/sub systems.

Scalable Channel-based Pub/Sub: Most commercial
pub/sub system provide a channel-based interface. As an
example, Amazon SNS [1] is a commercial channel-based
pub/sub system for the Cloud designed to support push no-
tifications. Google Cloud Messaging (GCM) [3] is Google’s
well known push notification framework. Both systems offer
reliability through persistence and replication, but not much
information exists in the literature that explains how these
architectures scale.

On the research side, scalability in channel-based Pub/Sub
has been explored in the area of peer-to-peer computing.
Scribe [7] was one of the first to propose a decentralized
multicast overlay architecture. It builds upon the P2P Pastry
distributed hash table. Poldercast [24] is a dynamic peer-
to-peer channel-based pub/sub system where all subscribers
for a given channel are interconnected using a ring overlay
(and additional random links); thus, any publication reaching
a subscriber can then reach other subscribers in a linear
fashion (worst case) or faster using the additional links.
SpiderCast [10] and [9] are further P2P channel-based pub/sub
systems that use distributed protocols to optimize the routing
overlay. The Dynatops system [27] features a dynamic self-
reconfigured channel-based pub/sub system with brokers that
can handle scenarios where subscriptions are short-lived. In
all these systems, there is an interconnected broker network
which is usually considered to be across a wide-area network.
While the various approaches aim at minimizing latencies,

publications can take many hops across the broker network
until they reach the subscribers. Our setup is very different
as it follows a more classical client/server architecture where
the servers are located in a Cloud center. Communication is
always only two hops (from the client to the server and directly
back to clients).

Regarding formal approaches, [23] proposes a formal mod-
elling of Cloud-based pub/sub systems which includes a cost-
model that can be used to predict the costs of deploying a
given workload to a given set of pub/sub servers in the Cloud.

Scalable Attribute-based and Content-based Pub/sub:
Content-based pub/sub systems have been extensively studied
in the past. While such approaches allow for finer-grained
publication-to-subscriber matching compared to channel-
based, they require more CPU processing. In addition, they
often involve an additional layer at the infrastructure (dis-
patching then matching servers), which might make them
less suitable for applications which require strict latency
bounds such as large-scale games. The BlueDove system [18]
proposes a brokerless, two-layered scalable attribute-based
pub/sub system which supports multi-dimensional attributes.
The attribute space for each dimension is split over a set of
Cloud matching servers. Subscriptions and publications are
forwarded to matching servers using dispatching servers. The
E-StreamHub middleware [6] aims at providing an elastic
content-based pub/sub platform that adds/removes nodes based
on the current load measured on the system (Dynamoth also
uses the measured system load). The PAPaS system [4] aims at
reusing the BitTorrent architecture to provide a hybrid peer-to-
peer assisted content-based pub/sub system. Again, due to the
P2P nature of this solution, we think that this can lead to higher
latencies that are unsuitable for some applications, e.g., games.
In [26], the authors conduct a performance evaluation of
running two popular non-cloud-based pub/sub systems based
on broker networks - PADRES [12] and OncePubSub - in
the Cloud using different approaches. The middleware that
was studied was not designed and optimized for the Cloud;
therefore, we think that our system would be more tailored
for the Cloud. In [19], the authors propose a Cloud broker-
based scalable matching service for content-based pub/sub
networks. [2] and [17] are two popular open source systems
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which can scale by manually adding/removing nodes; however,
they cannot be qualified as elastic because automatic addi-
tion/removal of nodes based on measured load is not done. [8]
proposes a load-balancing approach for broker-based content-
based pub/sub systems that is built over PADRES.

In general, scalability in most existing channel- and content-
based pub/sub is achieved by a broker network where a client
is connected to one of the brokers and brokers might forward
messages among each other to reach all subscribers. In our
system, any publication only goes through a single pub/sub
server (except during reconfiguration). In order to handle
individual high-loaded channels, we use a novel mechanism,
namely channel replication to avoid a single bottleneck.

Spatial pub/sub (SPS) systems are a special class of pub/sub
systems where subscribers subscribe to regions in a virtual
space (e.g., [15], SPEX [20]). While we use a gaming ap-
pliction for our evaluation, Dynamoth is a general purpose
pub/sub system that is not specifically designed for games but
can support arbitrary applications.

VII. CONCLUSION

We presented Dynamoth, our channel-based pub/sub mid-
dleware platform optimized for latency-constrained environ-
ments. Dynamoth uses independent pub/sub servers deployed
in the Cloud to handle the delivery of all publications in a
broker-less way in order to minimize latencies. A major con-
tribution is our hierarchical load-balancer which can perform
rebalancings at the system-level (macro) and at the channel-
level (micro). System-level load balancing enables our system
to scale to arbitrary numbers of publishers, subscribers and
publications in real time in order to adapt to the current
load conditions. Additional pub/sub servers are dynamically
allocated from the Cloud when needed and removed when they
are not required anymore. Channel-level load balancing (repli-
cation) allows our platform to handle special channels which
exhibit high load patterns such as channels with extremely
large numbers of publishers, subscribers and/or publications:
such channels can be mapped to more than one pub/sub server.
Dynamoth also proposes an elaborate propagation mechanism
to notify all relevant clients of changes to channel assignments
with very minimal impact on performance, while ensuring
uninterrupted delivery of all messages. We built an implemen-
tation of Dynamoth and ran extensive, large-scale experiments
using a multiplayer game prototype as an application testbed.
Our experiments reveal that Dynamoth is able to scale in an
elastic manner as the number of subscribers, publishers and
publications grow while maintaining low response time despite
the very high variability in the workloads. When the load
decreases, unnecessary resources are automatically released.

As future work, we are looking at how we could integrate
CPU load into our load balancing algorithms for environments
where CPU is a constrained resource (such as virtual CPUs in
the Cloud). We will also look at integrating a cost model in our
load balancing model in order to minimize Cloud-related costs.
Reliability, achieved either through replication or persistence
is another interesting aspect.
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