
Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

DynFilter: Limiting Bandwidth of Online Games
using Adaptive Pub/Sub Message Filtering

Julien Gascon-Samson, Jörg Kienzle, Bettina Kemme

School of Computer Science, McGill University
Montreal, Canada

December 3th, 2015

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Introduction and Background

1 Introduction and Background

2 DynFilter Architecture

3 Load Analysis & Optimization

4 Experiments

5 Conclusion

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

DynFilter Overview - Managing Bandwidth

Managing bandwidth: often a concern in multiplayer games

DynFilter: reducing the rate at which state updates are
sent for “remote” entities

*
*
**

Idea: game operator
defines a target bandwidth
“quota” over a window
DynFilter will apply
filtering in order to meet
the predefined quota
Continuously readjusted
Offered as a Cloud-based
platform

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

DynFilter Overview - Managing Bandwidth

Managing bandwidth: often a concern in multiplayer games
DynFilter: reducing the rate at which state updates are
sent for “remote” entities

*
*
**

Idea: game operator
defines a target bandwidth
“quota” over a window
DynFilter will apply
filtering in order to meet
the predefined quota
Continuously readjusted
Offered as a Cloud-based
platform

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

DynFilter Overview - Managing Bandwidth

Managing bandwidth: often a concern in multiplayer games
DynFilter: reducing the rate at which state updates are
sent for “remote” entities

*
*
**

Idea: game operator
defines a target bandwidth
“quota” over a window
DynFilter will apply
filtering in order to meet
the predefined quota
Continuously readjusted
Offered as a Cloud-based
platform

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

DynFilter Overview - Managing Bandwidth

Managing bandwidth: often a concern in multiplayer games
DynFilter: reducing the rate at which state updates are
sent for “remote” entities

*
*
**

Idea: game operator
defines a target bandwidth
“quota” over a window

DynFilter will apply
filtering in order to meet
the predefined quota
Continuously readjusted
Offered as a Cloud-based
platform

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

DynFilter Overview - Managing Bandwidth

Managing bandwidth: often a concern in multiplayer games
DynFilter: reducing the rate at which state updates are
sent for “remote” entities

*
*
**

Idea: game operator
defines a target bandwidth
“quota” over a window
DynFilter will apply
filtering in order to meet
the predefined quota

Continuously readjusted
Offered as a Cloud-based
platform

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

DynFilter Overview - Managing Bandwidth

Managing bandwidth: often a concern in multiplayer games
DynFilter: reducing the rate at which state updates are
sent for “remote” entities

*
*
**

Idea: game operator
defines a target bandwidth
“quota” over a window
DynFilter will apply
filtering in order to meet
the predefined quota
Continuously readjusted

Offered as a Cloud-based
platform

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

DynFilter Overview - Managing Bandwidth

Managing bandwidth: often a concern in multiplayer games
DynFilter: reducing the rate at which state updates are
sent for “remote” entities

*
*
**

Idea: game operator
defines a target bandwidth
“quota” over a window
DynFilter will apply
filtering in order to meet
the predefined quota
Continuously readjusted
Offered as a Cloud-based
platform

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

DynFilter Overview - Tile-Specific Filtering

Players not evenly distributed in multiplayer games (ie.
flocking)

Idea: varying amount of filtering based on tile “density”

More players:

State updates of each
individual player less
important
Larger bandwidth usage

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

DynFilter Overview - Tile-Specific Filtering

Players not evenly distributed in multiplayer games (ie.
flocking)
Idea: varying amount of filtering based on tile “density”

More players:

State updates of each
individual player less
important
Larger bandwidth usage

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

DynFilter Overview - Tile-Specific Filtering

Players not evenly distributed in multiplayer games (ie.
flocking)
Idea: varying amount of filtering based on tile “density”

More players:

State updates of each
individual player less
important
Larger bandwidth usage

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

DynFilter Overview - Tile-Specific Filtering

Players not evenly distributed in multiplayer games (ie.
flocking)
Idea: varying amount of filtering based on tile “density”

More players:

State updates of each
individual player less
important
Larger bandwidth usage

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Maintaining Immersion in Games

Game state updates must be delivered within certain time bounds
and/or at specific frequencies

FPS games:
Very fast-paced
Quake: ~ 20 updates per second (50 ms between updates)

RPG / MMORPG games:
Slower-paced
A few updates per second (highly dependant on the game)

If state updates are too infrequent:
Perception of “lag”
Players / objects jumping
Reduction in fun factor

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Maintaining Immersion in Games

Game state updates must be delivered within certain time bounds
and/or at specific frequencies
FPS games:

Very fast-paced
Quake: ~ 20 updates per second (50 ms between updates)

RPG / MMORPG games:
Slower-paced
A few updates per second (highly dependant on the game)

If state updates are too infrequent:
Perception of “lag”
Players / objects jumping
Reduction in fun factor

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Maintaining Immersion in Games

Game state updates must be delivered within certain time bounds
and/or at specific frequencies
FPS games:

Very fast-paced
Quake: ~ 20 updates per second (50 ms between updates)

RPG / MMORPG games:
Slower-paced
A few updates per second (highly dependant on the game)

If state updates are too infrequent:
Perception of “lag”
Players / objects jumping
Reduction in fun factor

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Maintaining Immersion in Games

Game state updates must be delivered within certain time bounds
and/or at specific frequencies
FPS games:

Very fast-paced
Quake: ~ 20 updates per second (50 ms between updates)

RPG / MMORPG games:
Slower-paced
A few updates per second (highly dependant on the game)

If state updates are too infrequent:
Perception of “lag”
Players / objects jumping
Reduction in fun factor

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Interest Management

Goal: limiting the
amount of messages
that need to be
transmitted
No need to transmit
state updates from
all entities to all
entities
Tile-Based
Interest
Management

*
*
**

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Motivation

Problem: highly-variable bandwidth needs
Popular games: lots of game servers (WoW: 250 servers1)

Without a “Cloud” environment

Need to provision for peak
Infrastructure will
generally be “under-used”
Underprovisioning: game
can become unplayable in
case of sudden load
DynFilter: limiting
bandwidth use to planned
capacity

With a “Cloud” environment

Increased scalability
Pay for resources used
(CPU, bandwidth, disk)
High bandwidth costs

Large number of
players, flocking

DynFilter: limiting
bandwidth use in order to
limit costs

1http://us.battle.net/wow/en/status

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Motivation

Problem: highly-variable bandwidth needs
Popular games: lots of game servers (WoW: 250 servers1)

Without a “Cloud” environment

Need to provision for peak
Infrastructure will
generally be “under-used”
Underprovisioning: game
can become unplayable in
case of sudden load
DynFilter: limiting
bandwidth use to planned
capacity

With a “Cloud” environment

Increased scalability
Pay for resources used
(CPU, bandwidth, disk)
High bandwidth costs

Large number of
players, flocking

DynFilter: limiting
bandwidth use in order to
limit costs

1http://us.battle.net/wow/en/status

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Motivation

Problem: highly-variable bandwidth needs
Popular games: lots of game servers (WoW: 250 servers1)

Without a “Cloud” environment
Need to provision for peak

Infrastructure will
generally be “under-used”
Underprovisioning: game
can become unplayable in
case of sudden load
DynFilter: limiting
bandwidth use to planned
capacity

With a “Cloud” environment

Increased scalability
Pay for resources used
(CPU, bandwidth, disk)
High bandwidth costs

Large number of
players, flocking

DynFilter: limiting
bandwidth use in order to
limit costs

1http://us.battle.net/wow/en/status

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Motivation

Problem: highly-variable bandwidth needs
Popular games: lots of game servers (WoW: 250 servers1)

Without a “Cloud” environment
Need to provision for peak
Infrastructure will
generally be “under-used”

Underprovisioning: game
can become unplayable in
case of sudden load
DynFilter: limiting
bandwidth use to planned
capacity

With a “Cloud” environment

Increased scalability
Pay for resources used
(CPU, bandwidth, disk)
High bandwidth costs

Large number of
players, flocking

DynFilter: limiting
bandwidth use in order to
limit costs

1http://us.battle.net/wow/en/status

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Motivation

Problem: highly-variable bandwidth needs
Popular games: lots of game servers (WoW: 250 servers1)

Without a “Cloud” environment
Need to provision for peak
Infrastructure will
generally be “under-used”
Underprovisioning: game
can become unplayable in
case of sudden load

DynFilter: limiting
bandwidth use to planned
capacity

With a “Cloud” environment

Increased scalability
Pay for resources used
(CPU, bandwidth, disk)
High bandwidth costs

Large number of
players, flocking

DynFilter: limiting
bandwidth use in order to
limit costs

1http://us.battle.net/wow/en/status

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Motivation

Problem: highly-variable bandwidth needs
Popular games: lots of game servers (WoW: 250 servers1)

Without a “Cloud” environment
Need to provision for peak
Infrastructure will
generally be “under-used”
Underprovisioning: game
can become unplayable in
case of sudden load
DynFilter: limiting
bandwidth use to planned
capacity

With a “Cloud” environment

Increased scalability
Pay for resources used
(CPU, bandwidth, disk)
High bandwidth costs

Large number of
players, flocking

DynFilter: limiting
bandwidth use in order to
limit costs

1http://us.battle.net/wow/en/status

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Motivation

Problem: highly-variable bandwidth needs
Popular games: lots of game servers (WoW: 250 servers1)

Without a “Cloud” environment
Need to provision for peak
Infrastructure will
generally be “under-used”
Underprovisioning: game
can become unplayable in
case of sudden load
DynFilter: limiting
bandwidth use to planned
capacity

With a “Cloud” environment

Increased scalability
Pay for resources used
(CPU, bandwidth, disk)
High bandwidth costs

Large number of
players, flocking

DynFilter: limiting
bandwidth use in order to
limit costs

1http://us.battle.net/wow/en/status

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Motivation

Problem: highly-variable bandwidth needs
Popular games: lots of game servers (WoW: 250 servers1)

Without a “Cloud” environment
Need to provision for peak
Infrastructure will
generally be “under-used”
Underprovisioning: game
can become unplayable in
case of sudden load
DynFilter: limiting
bandwidth use to planned
capacity

With a “Cloud” environment
Increased scalability

Pay for resources used
(CPU, bandwidth, disk)
High bandwidth costs

Large number of
players, flocking

DynFilter: limiting
bandwidth use in order to
limit costs

1http://us.battle.net/wow/en/status

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Motivation

Problem: highly-variable bandwidth needs
Popular games: lots of game servers (WoW: 250 servers1)

Without a “Cloud” environment
Need to provision for peak
Infrastructure will
generally be “under-used”
Underprovisioning: game
can become unplayable in
case of sudden load
DynFilter: limiting
bandwidth use to planned
capacity

With a “Cloud” environment
Increased scalability
Pay for resources used
(CPU, bandwidth, disk)

High bandwidth costs

Large number of
players, flocking

DynFilter: limiting
bandwidth use in order to
limit costs

1http://us.battle.net/wow/en/status

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Motivation

Problem: highly-variable bandwidth needs
Popular games: lots of game servers (WoW: 250 servers1)

Without a “Cloud” environment
Need to provision for peak
Infrastructure will
generally be “under-used”
Underprovisioning: game
can become unplayable in
case of sudden load
DynFilter: limiting
bandwidth use to planned
capacity

With a “Cloud” environment
Increased scalability
Pay for resources used
(CPU, bandwidth, disk)
High bandwidth costs

Large number of
players, flocking

DynFilter: limiting
bandwidth use in order to
limit costs

1http://us.battle.net/wow/en/status

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Motivation

Problem: highly-variable bandwidth needs
Popular games: lots of game servers (WoW: 250 servers1)

Without a “Cloud” environment
Need to provision for peak
Infrastructure will
generally be “under-used”
Underprovisioning: game
can become unplayable in
case of sudden load
DynFilter: limiting
bandwidth use to planned
capacity

With a “Cloud” environment
Increased scalability
Pay for resources used
(CPU, bandwidth, disk)
High bandwidth costs

Large number of
players, flocking

DynFilter: limiting
bandwidth use in order to
limit costs

1http://us.battle.net/wow/en/status

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

DynFilter Architecture

1 Introduction and Background

2 DynFilter Architecture

3 Load Analysis & Optimization

4 Experiments

5 Conclusion

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Topic-Based Publish/Subscribe

Subscribers (in blue) subscribe to topics
Publishers (in red) publish to topics
All subscribers of a given topic c will receive all publications
sent through c

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Topic-Based Publish/Subscribe

Subscribers (in blue) subscribe to topics
Publishers (in red) publish to topics
All subscribers of a given topic c will receive all publications
sent through c

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Topic-Based Publish/Subscribe

Subscribers (in blue) subscribe to topics
Publishers (in red) publish to topics
All subscribers of a given topic c will receive all publications
sent through c

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Topic-Based Publish/Subscribe

Subscribers (in blue) subscribe to topics
Publishers (in red) publish to topics
All subscribers of a given topic c will receive all publications
sent through c

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Tile-based Area-of-Interest / Subscriptions (1)

Game world divided in square
tiles (Z = 2)

*
*
**

Assuming X columns and Y
rows: we have XY tiles (Tx ,y)

Assuming player P is in Txp ,yp

(black tile)
Z : subscription range
P will publish to Txp ,yp

P will subscribe to an area of
tiles Tx ,y |x ∈ {xp − Z , . . . , xp +
Z}, y ∈ {yp − Z , . . . , yp + Z}
(grey tiles)
Players in Txp ,yp : high update
frequency → no filtering!
Players in grey area: low update
frequency → filtering may apply!

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Tile-based Area-of-Interest / Subscriptions (1)

Game world divided in square
tiles (Z = 2)

*
*
**

Assuming X columns and Y
rows: we have XY tiles (Tx ,y)
Assuming player P is in Txp ,yp

(black tile)

Z : subscription range
P will publish to Txp ,yp

P will subscribe to an area of
tiles Tx ,y |x ∈ {xp − Z , . . . , xp +
Z}, y ∈ {yp − Z , . . . , yp + Z}
(grey tiles)
Players in Txp ,yp : high update
frequency → no filtering!
Players in grey area: low update
frequency → filtering may apply!

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Tile-based Area-of-Interest / Subscriptions (1)

Game world divided in square
tiles (Z = 2)

*
*
**

Assuming X columns and Y
rows: we have XY tiles (Tx ,y)
Assuming player P is in Txp ,yp

(black tile)
Z : subscription range

P will publish to Txp ,yp

P will subscribe to an area of
tiles Tx ,y |x ∈ {xp − Z , . . . , xp +
Z}, y ∈ {yp − Z , . . . , yp + Z}
(grey tiles)
Players in Txp ,yp : high update
frequency → no filtering!
Players in grey area: low update
frequency → filtering may apply!

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Tile-based Area-of-Interest / Subscriptions (1)

Game world divided in square
tiles (Z = 2)

*
*
**

Assuming X columns and Y
rows: we have XY tiles (Tx ,y)
Assuming player P is in Txp ,yp

(black tile)
Z : subscription range
P will publish to Txp ,yp

P will subscribe to an area of
tiles Tx ,y |x ∈ {xp − Z , . . . , xp +
Z}, y ∈ {yp − Z , . . . , yp + Z}
(grey tiles)
Players in Txp ,yp : high update
frequency → no filtering!
Players in grey area: low update
frequency → filtering may apply!

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Tile-based Area-of-Interest / Subscriptions (1)

Game world divided in square
tiles (Z = 2)

*
*
**

Assuming X columns and Y
rows: we have XY tiles (Tx ,y)
Assuming player P is in Txp ,yp

(black tile)
Z : subscription range
P will publish to Txp ,yp

P will subscribe to an area of
tiles Tx ,y |x ∈ {xp − Z , . . . , xp +
Z}, y ∈ {yp − Z , . . . , yp + Z}
(grey tiles)

Players in Txp ,yp : high update
frequency → no filtering!
Players in grey area: low update
frequency → filtering may apply!

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Tile-based Area-of-Interest / Subscriptions (1)

Game world divided in square
tiles (Z = 2)

*
*
**

Assuming X columns and Y
rows: we have XY tiles (Tx ,y)
Assuming player P is in Txp ,yp

(black tile)
Z : subscription range
P will publish to Txp ,yp

P will subscribe to an area of
tiles Tx ,y |x ∈ {xp − Z , . . . , xp +
Z}, y ∈ {yp − Z , . . . , yp + Z}
(grey tiles)
Players in Txp ,yp : high update
frequency → no filtering!
Players in grey area: low update
frequency → filtering may apply!

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Tile-based Area-of-Interest / Subscriptions (2)

Game world divided in square
tiles (Z = 2)

*
*
**

Pub/Sub → Tile-based Model

For each tile Tx ,y , we have two
topics:

TH
x,y : high-frequency (no

filtering)
T L

x,y : low-frequency (filtering
can occur)

All publications are done on TH
x ,y

Subscriptions are done on TH
x ,y

(black) and T L
x ,y (grey)

Publications are forwarded from
TH

x ,y to T L
x ,y

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Tile-based Area-of-Interest / Subscriptions (2)

Game world divided in square
tiles (Z = 2)

*
*
**

Pub/Sub → Tile-based Model

For each tile Tx ,y , we have two
topics:

TH
x,y : high-frequency (no

filtering)
T L

x,y : low-frequency (filtering
can occur)

All publications are done on TH
x ,y

Subscriptions are done on TH
x ,y

(black) and T L
x ,y (grey)

Publications are forwarded from
TH

x ,y to T L
x ,y

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Tile-based Area-of-Interest / Subscriptions (2)

Game world divided in square
tiles (Z = 2)

*
*
**

Pub/Sub → Tile-based Model

For each tile Tx ,y , we have two
topics:

TH
x,y : high-frequency (no

filtering)
T L

x,y : low-frequency (filtering
can occur)

All publications are done on TH
x ,y

Subscriptions are done on TH
x ,y

(black) and T L
x ,y (grey)

Publications are forwarded from
TH

x ,y to T L
x ,y

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Tile-based Area-of-Interest / Subscriptions (2)

Game world divided in square
tiles (Z = 2)

*
*
**

Pub/Sub → Tile-based Model

For each tile Tx ,y , we have two
topics:

TH
x,y : high-frequency (no

filtering)
T L

x,y : low-frequency (filtering
can occur)

All publications are done on TH
x ,y

Subscriptions are done on TH
x ,y

(black) and T L
x ,y (grey)

Publications are forwarded from
TH

x ,y to T L
x ,y

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Tile-based Area-of-Interest / Subscriptions (2)

Game world divided in square
tiles (Z = 2)

*
*
**

Pub/Sub → Tile-based Model

For each tile Tx ,y , we have two
topics:

TH
x,y : high-frequency (no

filtering)
T L

x,y : low-frequency (filtering
can occur)

All publications are done on TH
x ,y

Subscriptions are done on TH
x ,y

(black) and T L
x ,y (grey)

Publications are forwarded from
TH

x ,y to T L
x ,y

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Architectural Components

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Load Analysis & Optimization

1 Introduction and Background

2 DynFilter Architecture

3 Load Analysis & Optimization

4 Experiments

5 Conclusion

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Load Model

Time unit: t (20 seconds in our experiments)

Time period: tmax units (10 min. in experiments → 30 units)
Bquota: max. bandwidth that can be consumed over the period
At every time unit t:

Bused: bandwidth that have been used since the beginning of
the period
Bremaining = Bquota − Bused
Btarget = Bremaining/(tmax − t) (should be consumed over the
next unit)
Bprev: bandwidth used over last unit
If Bprev ≤ Btarget:

Filtering can be reduced or canceled

Else

Filtering should be increased: too much bandwidth used
Bremove = Bprev − Btarget

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Load Model

Time unit: t (20 seconds in our experiments)
Time period: tmax units (10 min. in experiments → 30 units)

Bquota: max. bandwidth that can be consumed over the period
At every time unit t:

Bused: bandwidth that have been used since the beginning of
the period
Bremaining = Bquota − Bused
Btarget = Bremaining/(tmax − t) (should be consumed over the
next unit)
Bprev: bandwidth used over last unit
If Bprev ≤ Btarget:

Filtering can be reduced or canceled

Else

Filtering should be increased: too much bandwidth used
Bremove = Bprev − Btarget

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Load Model

Time unit: t (20 seconds in our experiments)
Time period: tmax units (10 min. in experiments → 30 units)
Bquota: max. bandwidth that can be consumed over the period

At every time unit t:

Bused: bandwidth that have been used since the beginning of
the period
Bremaining = Bquota − Bused
Btarget = Bremaining/(tmax − t) (should be consumed over the
next unit)
Bprev: bandwidth used over last unit
If Bprev ≤ Btarget:

Filtering can be reduced or canceled

Else

Filtering should be increased: too much bandwidth used
Bremove = Bprev − Btarget

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Load Model

Time unit: t (20 seconds in our experiments)
Time period: tmax units (10 min. in experiments → 30 units)
Bquota: max. bandwidth that can be consumed over the period
At every time unit t:

Bused: bandwidth that have been used since the beginning of
the period
Bremaining = Bquota − Bused
Btarget = Bremaining/(tmax − t) (should be consumed over the
next unit)
Bprev: bandwidth used over last unit
If Bprev ≤ Btarget:

Filtering can be reduced or canceled

Else

Filtering should be increased: too much bandwidth used
Bremove = Bprev − Btarget

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Load Model

Time unit: t (20 seconds in our experiments)
Time period: tmax units (10 min. in experiments → 30 units)
Bquota: max. bandwidth that can be consumed over the period
At every time unit t:

Bused: bandwidth that have been used since the beginning of
the period

Bremaining = Bquota − Bused
Btarget = Bremaining/(tmax − t) (should be consumed over the
next unit)
Bprev: bandwidth used over last unit
If Bprev ≤ Btarget:

Filtering can be reduced or canceled

Else

Filtering should be increased: too much bandwidth used
Bremove = Bprev − Btarget

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Load Model

Time unit: t (20 seconds in our experiments)
Time period: tmax units (10 min. in experiments → 30 units)
Bquota: max. bandwidth that can be consumed over the period
At every time unit t:

Bused: bandwidth that have been used since the beginning of
the period
Bremaining = Bquota − Bused

Btarget = Bremaining/(tmax − t) (should be consumed over the
next unit)
Bprev: bandwidth used over last unit
If Bprev ≤ Btarget:

Filtering can be reduced or canceled

Else

Filtering should be increased: too much bandwidth used
Bremove = Bprev − Btarget

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Load Model

Time unit: t (20 seconds in our experiments)
Time period: tmax units (10 min. in experiments → 30 units)
Bquota: max. bandwidth that can be consumed over the period
At every time unit t:

Bused: bandwidth that have been used since the beginning of
the period
Bremaining = Bquota − Bused
Btarget = Bremaining/(tmax − t) (should be consumed over the
next unit)

Bprev: bandwidth used over last unit
If Bprev ≤ Btarget:

Filtering can be reduced or canceled

Else

Filtering should be increased: too much bandwidth used
Bremove = Bprev − Btarget

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Load Model

Time unit: t (20 seconds in our experiments)
Time period: tmax units (10 min. in experiments → 30 units)
Bquota: max. bandwidth that can be consumed over the period
At every time unit t:

Bused: bandwidth that have been used since the beginning of
the period
Bremaining = Bquota − Bused
Btarget = Bremaining/(tmax − t) (should be consumed over the
next unit)
Bprev: bandwidth used over last unit

If Bprev ≤ Btarget:

Filtering can be reduced or canceled

Else

Filtering should be increased: too much bandwidth used
Bremove = Bprev − Btarget

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Load Model

Time unit: t (20 seconds in our experiments)
Time period: tmax units (10 min. in experiments → 30 units)
Bquota: max. bandwidth that can be consumed over the period
At every time unit t:

Bused: bandwidth that have been used since the beginning of
the period
Bremaining = Bquota − Bused
Btarget = Bremaining/(tmax − t) (should be consumed over the
next unit)
Bprev: bandwidth used over last unit
If Bprev ≤ Btarget:

Filtering can be reduced or canceled

Else

Filtering should be increased: too much bandwidth used
Bremove = Bprev − Btarget

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Load Model

Time unit: t (20 seconds in our experiments)
Time period: tmax units (10 min. in experiments → 30 units)
Bquota: max. bandwidth that can be consumed over the period
At every time unit t:

Bused: bandwidth that have been used since the beginning of
the period
Bremaining = Bquota − Bused
Btarget = Bremaining/(tmax − t) (should be consumed over the
next unit)
Bprev: bandwidth used over last unit
If Bprev ≤ Btarget:

Filtering can be reduced or canceled

Else

Filtering should be increased: too much bandwidth used
Bremove = Bprev − Btarget

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Load Optimization

Trivial Filtering

All tiles have the same
filtering ratio!
Assuming no filtering in
previous unit
F = Bremove

Bprev

If filtering was already in
place:

Need to extrapolate
bandwidth usage in all
low-frequency tiles as if
there was no filtering
Idea: invert the effects
of the filtering already
in place

DynFilter Filtering

Tiles have a different
filtering ratio (Fx ,y)
Filtering ratio depends on
number of players in tile

Filtering Ratio

If Fx ,y = 0→ no filtering
Otherwise, Fx ,y : ratio of
messages not transfered
from TH

x ,y to T L
x ,y

Capped at a maximum
value

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Load Optimization

Trivial Filtering
All tiles have the same
filtering ratio!

Assuming no filtering in
previous unit
F = Bremove

Bprev

If filtering was already in
place:

Need to extrapolate
bandwidth usage in all
low-frequency tiles as if
there was no filtering
Idea: invert the effects
of the filtering already
in place

DynFilter Filtering

Tiles have a different
filtering ratio (Fx ,y)
Filtering ratio depends on
number of players in tile

Filtering Ratio

If Fx ,y = 0→ no filtering
Otherwise, Fx ,y : ratio of
messages not transfered
from TH

x ,y to T L
x ,y

Capped at a maximum
value

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Load Optimization

Trivial Filtering
All tiles have the same
filtering ratio!
Assuming no filtering in
previous unit

F = Bremove
Bprev

If filtering was already in
place:

Need to extrapolate
bandwidth usage in all
low-frequency tiles as if
there was no filtering
Idea: invert the effects
of the filtering already
in place

DynFilter Filtering

Tiles have a different
filtering ratio (Fx ,y)
Filtering ratio depends on
number of players in tile

Filtering Ratio

If Fx ,y = 0→ no filtering
Otherwise, Fx ,y : ratio of
messages not transfered
from TH

x ,y to T L
x ,y

Capped at a maximum
value

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Load Optimization

Trivial Filtering
All tiles have the same
filtering ratio!
Assuming no filtering in
previous unit
F = Bremove

Bprev

If filtering was already in
place:

Need to extrapolate
bandwidth usage in all
low-frequency tiles as if
there was no filtering
Idea: invert the effects
of the filtering already
in place

DynFilter Filtering

Tiles have a different
filtering ratio (Fx ,y)
Filtering ratio depends on
number of players in tile

Filtering Ratio

If Fx ,y = 0→ no filtering
Otherwise, Fx ,y : ratio of
messages not transfered
from TH

x ,y to T L
x ,y

Capped at a maximum
value

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Load Optimization

Trivial Filtering
All tiles have the same
filtering ratio!
Assuming no filtering in
previous unit
F = Bremove

Bprev

If filtering was already in
place:

Need to extrapolate
bandwidth usage in all
low-frequency tiles as if
there was no filtering
Idea: invert the effects
of the filtering already
in place

DynFilter Filtering

Tiles have a different
filtering ratio (Fx ,y)
Filtering ratio depends on
number of players in tile

Filtering Ratio

If Fx ,y = 0→ no filtering
Otherwise, Fx ,y : ratio of
messages not transfered
from TH

x ,y to T L
x ,y

Capped at a maximum
value

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Load Optimization

Trivial Filtering
All tiles have the same
filtering ratio!
Assuming no filtering in
previous unit
F = Bremove

Bprev

If filtering was already in
place:

Need to extrapolate
bandwidth usage in all
low-frequency tiles as if
there was no filtering
Idea: invert the effects
of the filtering already
in place

DynFilter Filtering

Tiles have a different
filtering ratio (Fx ,y)
Filtering ratio depends on
number of players in tile

Filtering Ratio

If Fx ,y = 0→ no filtering
Otherwise, Fx ,y : ratio of
messages not transfered
from TH

x ,y to T L
x ,y

Capped at a maximum
value

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Load Optimization

Trivial Filtering
All tiles have the same
filtering ratio!
Assuming no filtering in
previous unit
F = Bremove

Bprev

If filtering was already in
place:

Need to extrapolate
bandwidth usage in all
low-frequency tiles as if
there was no filtering
Idea: invert the effects
of the filtering already
in place

DynFilter Filtering
Tiles have a different
filtering ratio (Fx ,y)

Filtering ratio depends on
number of players in tile

Filtering Ratio

If Fx ,y = 0→ no filtering
Otherwise, Fx ,y : ratio of
messages not transfered
from TH

x ,y to T L
x ,y

Capped at a maximum
value

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Load Optimization

Trivial Filtering
All tiles have the same
filtering ratio!
Assuming no filtering in
previous unit
F = Bremove

Bprev

If filtering was already in
place:

Need to extrapolate
bandwidth usage in all
low-frequency tiles as if
there was no filtering
Idea: invert the effects
of the filtering already
in place

DynFilter Filtering
Tiles have a different
filtering ratio (Fx ,y)
Filtering ratio depends on
number of players in tile

Filtering Ratio

If Fx ,y = 0→ no filtering
Otherwise, Fx ,y : ratio of
messages not transfered
from TH

x ,y to T L
x ,y

Capped at a maximum
value

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Load Optimization

Trivial Filtering
All tiles have the same
filtering ratio!
Assuming no filtering in
previous unit
F = Bremove

Bprev

If filtering was already in
place:

Need to extrapolate
bandwidth usage in all
low-frequency tiles as if
there was no filtering
Idea: invert the effects
of the filtering already
in place

DynFilter Filtering
Tiles have a different
filtering ratio (Fx ,y)
Filtering ratio depends on
number of players in tile

Filtering Ratio

If Fx ,y = 0→ no filtering
Otherwise, Fx ,y : ratio of
messages not transfered
from TH

x ,y to T L
x ,y

Capped at a maximum
value

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Load Optimization

Trivial Filtering
All tiles have the same
filtering ratio!
Assuming no filtering in
previous unit
F = Bremove

Bprev

If filtering was already in
place:

Need to extrapolate
bandwidth usage in all
low-frequency tiles as if
there was no filtering
Idea: invert the effects
of the filtering already
in place

DynFilter Filtering
Tiles have a different
filtering ratio (Fx ,y)
Filtering ratio depends on
number of players in tile

Filtering Ratio
If Fx ,y = 0→ no filtering

Otherwise, Fx ,y : ratio of
messages not transfered
from TH

x ,y to T L
x ,y

Capped at a maximum
value

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Load Optimization

Trivial Filtering
All tiles have the same
filtering ratio!
Assuming no filtering in
previous unit
F = Bremove

Bprev

If filtering was already in
place:

Need to extrapolate
bandwidth usage in all
low-frequency tiles as if
there was no filtering
Idea: invert the effects
of the filtering already
in place

DynFilter Filtering
Tiles have a different
filtering ratio (Fx ,y)
Filtering ratio depends on
number of players in tile

Filtering Ratio
If Fx ,y = 0→ no filtering
Otherwise, Fx ,y : ratio of
messages not transfered
from TH

x ,y to T L
x ,y

Capped at a maximum
value

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Load Optimization

Trivial Filtering
All tiles have the same
filtering ratio!
Assuming no filtering in
previous unit
F = Bremove

Bprev

If filtering was already in
place:

Need to extrapolate
bandwidth usage in all
low-frequency tiles as if
there was no filtering
Idea: invert the effects
of the filtering already
in place

DynFilter Filtering
Tiles have a different
filtering ratio (Fx ,y)
Filtering ratio depends on
number of players in tile

Filtering Ratio
If Fx ,y = 0→ no filtering
Otherwise, Fx ,y : ratio of
messages not transfered
from TH

x ,y to T L
x ,y

Capped at a maximum
value

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

DynFilter: Computing the Filtering Ratio

Idea: determine how many bytes we need to “save” for each T L
x ,y

Outgoing Bandwidth

BH
x ,y , BL

x ,y : out. bandwidth over prev. unit of TH
x ,y , T L

x ,y

Extrapolated outgoing bandwidth (over previous time unit of

T L
x ,y), if no filtering was in place: B∗L

x ,y =
BL

x,y
1−Fx,y

Weight of tile Tx ,y

Density factor based on # subscribers: Dx ,y = log2 Sx ,y

Weight of tile Tx ,y : Wx ,y = (BH
x ,y + B∗L

x ,y) · Dx ,y

Computing the Filtering Ratio

of bytes to “save”: Qx ,y = (Wx ,y/(
∑

Wx ,y)) · Bremove

Filtering ratio: Fx ,y =
Qx,y
B∗L

x,y

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

DynFilter: Computing the Filtering Ratio

Idea: determine how many bytes we need to “save” for each T L
x ,y

Outgoing Bandwidth

BH
x ,y , BL

x ,y : out. bandwidth over prev. unit of TH
x ,y , T L

x ,y

Extrapolated outgoing bandwidth (over previous time unit of

T L
x ,y), if no filtering was in place: B∗L

x ,y =
BL

x,y
1−Fx,y

Weight of tile Tx ,y

Density factor based on # subscribers: Dx ,y = log2 Sx ,y

Weight of tile Tx ,y : Wx ,y = (BH
x ,y + B∗L

x ,y) · Dx ,y

Computing the Filtering Ratio

of bytes to “save”: Qx ,y = (Wx ,y/(
∑

Wx ,y)) · Bremove

Filtering ratio: Fx ,y =
Qx,y
B∗L

x,y

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

DynFilter: Computing the Filtering Ratio

Idea: determine how many bytes we need to “save” for each T L
x ,y

Outgoing Bandwidth

BH
x ,y , BL

x ,y : out. bandwidth over prev. unit of TH
x ,y , T L

x ,y

Extrapolated outgoing bandwidth (over previous time unit of

T L
x ,y), if no filtering was in place: B∗L

x ,y =
BL

x,y
1−Fx,y

Weight of tile Tx ,y

Density factor based on # subscribers: Dx ,y = log2 Sx ,y

Weight of tile Tx ,y : Wx ,y = (BH
x ,y + B∗L

x ,y) · Dx ,y

Computing the Filtering Ratio

of bytes to “save”: Qx ,y = (Wx ,y/(
∑

Wx ,y)) · Bremove

Filtering ratio: Fx ,y =
Qx,y
B∗L

x,y

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

DynFilter: Computing the Filtering Ratio

Idea: determine how many bytes we need to “save” for each T L
x ,y

Outgoing Bandwidth

BH
x ,y , BL

x ,y : out. bandwidth over prev. unit of TH
x ,y , T L

x ,y

Extrapolated outgoing bandwidth (over previous time unit of

T L
x ,y), if no filtering was in place: B∗L

x ,y =
BL

x,y
1−Fx,y

Weight of tile Tx ,y

Density factor based on # subscribers: Dx ,y = log2 Sx ,y

Weight of tile Tx ,y : Wx ,y = (BH
x ,y + B∗L

x ,y) · Dx ,y

Computing the Filtering Ratio

of bytes to “save”: Qx ,y = (Wx ,y/(
∑

Wx ,y)) · Bremove

Filtering ratio: Fx ,y =
Qx,y
B∗L

x,y

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

DynFilter: Computing the Filtering Ratio

Idea: determine how many bytes we need to “save” for each T L
x ,y

Outgoing Bandwidth

BH
x ,y , BL

x ,y : out. bandwidth over prev. unit of TH
x ,y , T L

x ,y

Extrapolated outgoing bandwidth (over previous time unit of

T L
x ,y), if no filtering was in place: B∗L

x ,y =
BL

x,y
1−Fx,y

Weight of tile Tx ,y

Density factor based on # subscribers: Dx ,y = log2 Sx ,y

Weight of tile Tx ,y : Wx ,y = (BH
x ,y + B∗L

x ,y) · Dx ,y

Computing the Filtering Ratio

of bytes to “save”: Qx ,y = (Wx ,y/(
∑

Wx ,y)) · Bremove

Filtering ratio: Fx ,y =
Qx,y
B∗L

x,y

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

DynFilter: Computing the Filtering Ratio

Idea: determine how many bytes we need to “save” for each T L
x ,y

Outgoing Bandwidth

BH
x ,y , BL

x ,y : out. bandwidth over prev. unit of TH
x ,y , T L

x ,y

Extrapolated outgoing bandwidth (over previous time unit of

T L
x ,y), if no filtering was in place: B∗L

x ,y =
BL

x,y
1−Fx,y

Weight of tile Tx ,y

Density factor based on # subscribers: Dx ,y = log2 Sx ,y

Weight of tile Tx ,y : Wx ,y = (BH
x ,y + B∗L

x ,y) · Dx ,y

Computing the Filtering Ratio

of bytes to “save”: Qx ,y = (Wx ,y/(
∑

Wx ,y)) · Bremove

Filtering ratio: Fx ,y =
Qx,y
B∗L

x,y

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Experiments

1 Introduction and Background

2 DynFilter Architecture

3 Load Analysis & Optimization

4 Experiments

5 Conclusion

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Implementation & Experimental Setup

Implementation
Implemented in Java, on
top of Dynamoth
Pub/Sub: unmodified
open-source Redis
middleware
Experiments run on
DynGame (prototype
game skeletton built on
top of Mammoth)
DynGame: large amount
of AI-controlled players
(random-waypoint)
Supports flocking

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Implementation & Experimental Setup

Experimental Setup
20 Amazon EC2 instances
15 players per instance
(max 250)
Z = 2 (subscription to up
to 25 tiles)
Period of 10 minutes
Units of 20 seconds

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Experiments

Experiment 1: FPS Game /
Scalability

Scalability in a FPS-like
game with many players
Very high frequency of
updates (20 updates/sec)
Up to 150 players (Q3=16,
WatchMen=48)
10x10 map (100 tiles)
Player can view up to 25% of
the map (Z = 2)
Bandwidth alloc.: 8000Mb

Experiment 2: MMORPG Game
with Flocking

Flocking in medium-scale
MMOGs
Flocking: quadratic growth in
message delivery
Up to 250 players
20x20 map (400 tiles)
Player can view 6.2% of the
map (Z = 2)
Flocking ratio ψ between 0
and 0.5
Flocking: 4x4 centric tiles
Bandwidth alloc.:10000Mb

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Experiments

Experiment 1: FPS Game /
Scalability

Scalability in a FPS-like
game with many players
Very high frequency of
updates (20 updates/sec)
Up to 150 players (Q3=16,
WatchMen=48)
10x10 map (100 tiles)
Player can view up to 25% of
the map (Z = 2)
Bandwidth alloc.: 8000Mb

Experiment 2: MMORPG Game
with Flocking

Flocking in medium-scale
MMOGs
Flocking: quadratic growth in
message delivery
Up to 250 players
20x20 map (400 tiles)
Player can view 6.2% of the
map (Z = 2)
Flocking ratio ψ between 0
and 0.5
Flocking: 4x4 centric tiles
Bandwidth alloc.:10000Mb

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

FPS Game - Results (1)

Number of Players and Total
Outgoing Bandwidth

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180

200

0

2000

4000

6000

8000

10000

12000

14000

16000
players
Total Transmitted (with
DynFilter)
Total Transmitted (without
DynFilter)

Time (minutes)

N
um

be
r

o
f
pl

a
ye

rs

To
ta

l T
ra

ns
m

itt
e
d

(m
b)

State Updates per Second

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180

200

0

5

10

15

20

25

players
Averaged # updates / sec

Time (minutes)

N
um

be
r

o
f p

la
ye

rs

S
ta

te
 u

pd
a

te
s

pe
r

se
co

nd

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

FPS Game - Results (1)

Number of Players and Total
Outgoing Bandwidth

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180

200

0

2000

4000

6000

8000

10000

12000

14000

16000
players
Total Transmitted (with
DynFilter)
Total Transmitted (without
DynFilter)

Time (minutes)

N
um

be
r

o
f
pl

a
ye

rs

To
ta

l T
ra

ns
m

itt
e
d

(m
b)

State Updates per Second

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180

200

0

5

10

15

20

25

players
Averaged # updates / sec

Time (minutes)

N
um

be
r

o
f p

la
ye

rs

S
ta

te
 u

pd
a

te
s

pe
r

se
co

nd

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

FPS Game - Results (2)

→ Bandwidth savings of 43%.

Filtering Ratio Heat Maps:

t = 2.3; F̂ = 0.14

t = 4; F̂ = 0.73 t = 8.7; F̂ = 0.54

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

FPS Game - Results (2)

→ Bandwidth savings of 43%.

Filtering Ratio Heat Maps:

t = 2.3; F̂ = 0.14 t = 4; F̂ = 0.73

t = 8.7; F̂ = 0.54

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

FPS Game - Results (2)

→ Bandwidth savings of 43%.

Filtering Ratio Heat Maps:

t = 2.3; F̂ = 0.14 t = 4; F̂ = 0.73 t = 8.7; F̂ = 0.54

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

MMORPG - Results (1)

Flocking Ratio and Total
Outgoing Bandwidth

0 1 2 3 4 5 6 7 8 9 10
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000Ψ (Flocking Ratio)
Total Transmitted (with
DynFilter)
Total Transmitted (without
DynFilter)

Time (minutes)

F
lo

ck
in

g
R

a
tio

To
ta

l T
ra

ns
m

itt
e

d
(m

b)

State Updates per Second

0 1 2 3 4 5 6 7 8 9 10
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5Ψ (Flocking Ratio)
Averaged # updates / sec

Time (minutes)

F
lo

ck
in

g
R

a
tio

S
ta

te
 u

pd
a

te
s

pe
r

se
co

nd

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

MMORPG - Results (1)

Flocking Ratio and Total
Outgoing Bandwidth

0 1 2 3 4 5 6 7 8 9 10
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000Ψ (Flocking Ratio)
Total Transmitted (with
DynFilter)
Total Transmitted (without
DynFilter)

Time (minutes)

F
lo

ck
in

g
R

a
tio

To
ta

l T
ra

ns
m

itt
e

d
(m

b)

State Updates per Second

0 1 2 3 4 5 6 7 8 9 10
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5Ψ (Flocking Ratio)
Averaged # updates / sec

Time (minutes)

F
lo

ck
in

g
R

a
tio

S
ta

te
 u

pd
a

te
s

pe
r

se
co

nd

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

MMORPG - Results (2)

→ Bandwidth savings of 38%.

Filtering Ratio Heat Maps:

t = 3.5; ψ = 0.21

t = 6; ψ = 0.50 t = 7.3; ψ = 0.15

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

MMORPG - Results (2)

→ Bandwidth savings of 38%.

Filtering Ratio Heat Maps:

t = 3.5; ψ = 0.21 t = 6; ψ = 0.50

t = 7.3; ψ = 0.15

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

MMORPG - Results (2)

→ Bandwidth savings of 38%.

Filtering Ratio Heat Maps:

t = 3.5; ψ = 0.21 t = 6; ψ = 0.50 t = 7.3; ψ = 0.15

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Conclusion & Future Work

1 Introduction and Background

2 DynFilter Architecture

3 Load Analysis & Optimization

4 Experiments

5 Conclusion

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Conclusion

DynFilter: middleware designed to adaptively filter game state
update messages

Limiting bandwidth use within games in a Cloud setting
Meeting predefined quotas
Full state updating for close entities
Per-tile filtering (adapts to volume of players in tiles)
Experiments: FPS and MMORPG
Important bandwidth savings while maintaining a minimal
update frequency

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Conclusion

DynFilter: middleware designed to adaptively filter game state
update messages
Limiting bandwidth use within games in a Cloud setting

Meeting predefined quotas
Full state updating for close entities
Per-tile filtering (adapts to volume of players in tiles)
Experiments: FPS and MMORPG
Important bandwidth savings while maintaining a minimal
update frequency

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Conclusion

DynFilter: middleware designed to adaptively filter game state
update messages
Limiting bandwidth use within games in a Cloud setting
Meeting predefined quotas

Full state updating for close entities
Per-tile filtering (adapts to volume of players in tiles)
Experiments: FPS and MMORPG
Important bandwidth savings while maintaining a minimal
update frequency

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Conclusion

DynFilter: middleware designed to adaptively filter game state
update messages
Limiting bandwidth use within games in a Cloud setting
Meeting predefined quotas
Full state updating for close entities

Per-tile filtering (adapts to volume of players in tiles)
Experiments: FPS and MMORPG
Important bandwidth savings while maintaining a minimal
update frequency

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Conclusion

DynFilter: middleware designed to adaptively filter game state
update messages
Limiting bandwidth use within games in a Cloud setting
Meeting predefined quotas
Full state updating for close entities
Per-tile filtering (adapts to volume of players in tiles)

Experiments: FPS and MMORPG
Important bandwidth savings while maintaining a minimal
update frequency

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Conclusion

DynFilter: middleware designed to adaptively filter game state
update messages
Limiting bandwidth use within games in a Cloud setting
Meeting predefined quotas
Full state updating for close entities
Per-tile filtering (adapts to volume of players in tiles)
Experiments: FPS and MMORPG

Important bandwidth savings while maintaining a minimal
update frequency

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Conclusion

DynFilter: middleware designed to adaptively filter game state
update messages
Limiting bandwidth use within games in a Cloud setting
Meeting predefined quotas
Full state updating for close entities
Per-tile filtering (adapts to volume of players in tiles)
Experiments: FPS and MMORPG
Important bandwidth savings while maintaining a minimal
update frequency

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Future Work

N-Layered Filtering

Quality of Experience evaluations
Classification of game messages (only some messages could be
dropped)

Can exploit to the Pub/Sub layer for that: dropping messages
from some topics only

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Future Work

N-Layered Filtering
Quality of Experience evaluations

Classification of game messages (only some messages could be
dropped)

Can exploit to the Pub/Sub layer for that: dropping messages
from some topics only

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Future Work

N-Layered Filtering
Quality of Experience evaluations
Classification of game messages (only some messages could be
dropped)

Can exploit to the Pub/Sub layer for that: dropping messages
from some topics only

Introduction and Background DynFilter Architecture Load Analysis & Optimization Experiments Conclusion

Conclusion & Future Work

Thank you for your attention!

	Introduction and Background
	DynFilter Architecture
	Load Analysis & Optimization
	Experiments
	Conclusion

