DynFilter: Limiting Bandwidth of Online Games
using Adaptive Pub/Sub Message Filtering

Julien Gascon-Samson, Jorg Kienzle, Bettina Kemme

School of Computer Science, McGill University
Montreal, Canada

School of Computer Science

December 3th, 2015

Introduction and Background

Introduction and Background

@ Introduction and Background

Introduction and Background

DynFilter Overview - Managing Bandwidth

@ Managing bandwidth: often a concern in multiplayer games

Introduction and Background

DynFilter Overview - Managing Bandwidth

@ Managing bandwidth: often a concern in multiplayer games

e DynFilter: reducing the rate at which state updates are
sent for “remote” entities

Introduction and Background

DynFilter Overview - Managing Bandwidth

@ Managing bandwidth: often a concern in multiplayer games

e DynFilter: reducing the rate at which state updates are
sent for “remote” entities

Introduction and Background

DynFilter Overview - Managing Bandwidth

@ Managing bandwidth: often a concern in multiplayer games

e DynFilter: reducing the rate at which state updates are
sent for “remote” entities

@ |dea: game operator
defines a target bandwidth
“quota” over a window

Introduction and Background

DynFilter Overview - Managing Bandwidth

@ Managing bandwidth: often a concern in multiplayer games

e DynFilter: reducing the rate at which state updates are
sent for “remote” entities

o ldea: game operator
defines a target bandwidth
“quota” over a window

@ DynFilter will apply
filtering in order to meet
the predefined quota

Introduction and Background

DynFilter Overview - Managing Bandwidth

@ Managing bandwidth: often a concern in multiplayer games

e DynFilter: reducing the rate at which state updates are
sent for “remote” entities

o ldea: game operator
defines a target bandwidth
“quota” over a window

@ DynFilter will apply
filtering in order to meet
the predefined quota

e Continuously readjusted

Introduction and Background

DynFilter Overview - Managing Bandwidth

@ Managing bandwidth: often a concern in multiplayer games

e DynFilter: reducing the rate at which state updates are
sent for “remote” entities

o ldea: game operator
defines a target bandwidth
“quota” over a window

@ DynFilter will apply
filtering in order to meet
the predefined quota

e Continuously readjusted

o Offered as a Cloud-based
platform

Introduction and Background

DynFilter Overview - Tile-Specific Filtering

@ Players not evenly distributed in multiplayer games (ie.
flocking)

Introduction and Background

DynFilter Overview - Tile-Specific Filtering

@ Players not evenly distributed in multiplayer games (ie.
flocking)

@ Idea: varying amount of filtering based on tile "density”

Introduction and Background

DynFilter Overview - Tile-Specific Filtering

@ Players not evenly distributed in multiplayer games (ie.

flocking)
@ Idea: varying amount of filtering based on tile "density”
u u
m
[

Introduction and Background

DynFilter Overview - Tile-Specific Filtering

@ Players not evenly distributed in multiplayer games (ie.

flocking)
@ Idea: varying amount of filtering based on tile "density”
u u
m
[

@ More players:

o State updates of each
individual player less
important

o Larger bandwidth usage

Introduction and Background

Maintaining Immersion in Games

Game state updates must be delivered within certain time bounds
and/or at specific frequencies

Introduction and Background

Maintaining Immersion in Games

Game state updates must be delivered within certain time bounds
and/or at specific frequencies
FPS games:

@ Very fast-paced
@ Quake: 7 20 updates per second (50 ms between updates)

Introduction and Background

Maintaining Immersion in Games

Game state updates must be delivered within certain time bounds
and/or at specific frequencies
FPS games:

@ Very fast-paced

@ Quake: 7 20 updates per second (50 ms between updates)
RPG / MMORPG games:

@ Slower-paced

e A few updates per second (highly dependant on the game)

Introduction and Background

Maintaining Immersion in Games

Game state updates must be delivered within certain time bounds
and/or at specific frequencies
FPS games:

@ Very fast-paced

@ Quake: 7 20 updates per second (50 ms between updates)
RPG / MMORPG games:

@ Slower-paced

e A few updates per second (highly dependant on the game)
If state updates are too infrequent:

@ Perception of “lag”

e Players / objects jumping

@ Reduction in fun factor

Introduction and Background

Interest Management

@ Goal: limiting the
amount of messages
that need to be
transmitted | *

@ No need to transmit
state updates from n
all entities to all
entities

o Tile-Based
Interest
Management

Introduction and Background

Motivation

@ Problem: highly-variable bandwidth needs

@ Popular games: lots of game servers (WoW: 250 servers')

http://us.battle.net/wow/en/status

Introduction and Background

Motivation

@ Problem: highly-variable bandwidth needs

@ Popular games: lots of game servers (WoW: 250 servers')

Without a “Cloud” environment

o’

http://us.battle.net/wow/en/status

Introduction and Background

Motivation

@ Problem: highly-variable bandwidth needs

@ Popular games: lots of game servers (WoW: 250 servers')

Without a “Cloud” environment

@ Need to provision for peak

o’

http://us.battle.net/wow/en/status

Introduction and Background

Motivation

@ Problem: highly-variable bandwidth needs

@ Popular games: lots of game servers (WoW: 250 servers')

Without a “Cloud” environment

@ Need to provision for peak

@ Infrastructure will
generally be “under-used”

o’

http://us.battle.net/wow/en/status

Introduction and Background

Motivation

@ Problem: highly-variable bandwidth needs
@ Popular games: lots of game servers (WoW: 250 servers')

Without a “Cloud” environment

@ Need to provision for peak

@ Infrastructure will
generally be “under-used”

e Underprovisioning: game
can become unplayable in
case of sudden load

o’

http://us.battle.net/wow/en/status

Introduction and Background

Motivation

@ Problem: highly-variable bandwidth needs

@ Popular games: lots of game servers (WoW: 250 servers')

Without a “Cloud” environment

@ Need to provision for peak

@ Infrastructure will
generally be “under-used”

e Underprovisioning: game
can become unplayable in
case of sudden load

@ DynFilter: limiting
bandwidth use to planned
capacity

o’

http://us.battle.net/wow/en/status

Introduction and Background

Motivation

@ Problem: highly-variable bandwidth needs

@ Popular games: lots of game servers (WoW: 250 servers')

Without a “Cloud” environment With a "Cloud" environment

@ Need to provision for peak

@ Infrastructure will
generally be “under-used”

e Underprovisioning: game
can become unplayable in
case of sudden load

@ DynFilter: limiting
bandwidth use to planned
capacity

http://us.battle.net/wow/en /status

Introduction and Background

Motivation

@ Problem: highly-variable bandwidth needs

@ Popular games: lots of game servers (WoW: 250 servers')

Without a “Cloud” environment With a "Cloud" environment

o Need to provision for peak ® Increased scalability

@ Infrastructure will
generally be “under-used”

e Underprovisioning: game
can become unplayable in
case of sudden load

@ DynFilter: limiting
bandwidth use to planned
capacity

http://us.battle.net/wow/en /status

Introduction and Background

Motivation

@ Problem: highly-variable bandwidth needs

@ Popular games: lots of game servers (WoW: 250 servers')

Without a “Cloud” environment With a "Cloud" environment

o Need to provision for peak ® Increased scalability

@ Pay for resources used
(CPU, bandwidth, disk)

@ Infrastructure will
generally be “under-used”

e Underprovisioning: game
can become unplayable in
case of sudden load

@ DynFilter: limiting
bandwidth use to planned
capacity

http://us.battle.net/wow/en /status

Introduction and Background

Motivation

@ Problem: highly-variable bandwidth needs

@ Popular games: lots of game servers (WoW: 250 servers')

Without a “Cloud” environment With a "Cloud" environment

o Need to provision for peak ® Increased scalability

@ Pay for resources used
(CPU, bandwidth, disk)

@ High bandwidth costs

@ Infrastructure will
generally be “under-used”

e Underprovisioning: game
can become unplayable in o Large number of
case of sudden load players, flocking

@ DynFilter: limiting
bandwidth use to planned
capacity

http://us.battle.net/wow/en /status

Introduction and Background

Motivation

@ Problem: highly-variable bandwidth needs

@ Popular games: lots of game servers (WoW: 250 servers')

Without a “Cloud” environment With a "Cloud" environment

o Need to provision for peak ® Increased scalability

@ Pay for resources used
(CPU, bandwidth, disk)

@ High bandwidth costs

@ Infrastructure will
generally be “under-used”

e Underprovisioning: game
can become unplayable in o Large number of
case of sudden load players, flocking

@ DynFilter: limiting
bandwidth use to planned
capacity

@ DynFilter: limiting
bandwidth use in order to
limit costs

http://us.battle.net/wow/en /status

DynFilter Architecture

DynFilter Architecture

© DynFilter Architecture

DynFilter Architecture

Topic-Based Publish/Subscribe

@ Subscribers (in blue) subscribe to topics
e Publishers (in red) publish to topics

@ All subscribers of a given topic ¢ will receive all publications
sent through ¢

H1

DynFilter Architecture

Topic-Based Publish/Subscribe

@ Subscribers (in blue) subscribe to topics
e Publishers (in red) publish to topics

@ All subscribers of a given topic ¢ will receive all publications
sent through ¢

subseribe(c)

subscrl

DynFilter Architecture

Topic-Based Publish/Subscribe

@ Subscribers (in blue) subscribe to topics
e Publishers (in red) publish to topics

@ All subscribers of a given topic ¢ will receive all publications

W|ish(c,m)

sent through ¢

H1

DynFilter Architecture

Topic-Based Publish/Subscribe

@ Subscribers (in blue) subscribe to topics
e Publishers (in red) publish to topics

@ All subscribers of a given topic ¢ will receive all publications
sent through ¢

Client2

DynFilter Architecture

Tile-based Area-of-Interest / Subscriptions (1)

@ Assuming X columns and Y

Game world divided in square rows: we have XY tiles (T,)

tiles (Z = 2)

DynFilter Architecture

Tile-based Area-of-Interest / Subscriptions (1)

@ Assuming X columns and Y

Game world divided in square rows: we have XY tiles (T,)

tiles (Z = 2) ° ,(A\t;slsur;ihlg)player Pisin Ty, .y,
ack tile

DynFilter Architecture

Tile-based Area-of-Interest / Subscriptions (1)

@ Assuming X columns and Y

Game world divided in square rows: we have XY tiles (T,)
tiles (Z =2) @ Assuming player P isin T,
(black tile)

@ Z: subscription range

DynFilter Architecture

Tile-based Area-of-Interest / Subscriptions (1)

@ Assuming X columns and Y

Game world divided in square rows: we have XY tiles (T,)
tiles (Z =2) @ Assuming player P isin T,
(black tile)

@ Z: subscription range
e P will publish to T, .,

DynFilter Architecture

Tile-based Area-of-Interest / Subscriptions (1)

@ Assuming X columns and Y

Game world divided in square rows: we have XY tiles (T,)
tiles (Z =2) @ Assuming player P isin T,
(black tile)

@ Z: subscription range

e P will publish to T, .,

- ‘ @ P will subscribe to an area of

‘ tiles Ty y|x € {xp —Z,..., %+
Zyyyel{yw—2Z,....yp + 2}
(grey tiles)

DynFilter Architecture

Tile-based Area-of-Interest / Subscriptions (1)

@ Assuming X columns and Y

Game world divided in square rows: we have XY tiles (T,)
tiles (Z =2) @ Assuming player P isin T,
(black tile)

@ Z: subscription range

e P will publish to T, .,

= ‘ @ P will subscribe to an area of

‘ tiles Ty ylx € {xp —Z,..., % +
Zyyyel{yw—2Z,....yp + 2}
(grey tiles)

e Playersin T, : high update
frequency — no filtering!

o Players in grey area: low update
frequency — filtering may apply!

DynFilter Architecture

Tile-based Area-of-Interest / Subscriptions (2)

Game world divided in square Pub/Sub — Tile-based Model

tiles (Z =2)

DynFilter Architecture

Tile-based Area-of-Interest / Subscriptions (2)

Game world divided in square Pub/Sub — Tile-based Model

tiles (Z =2) e For each tile T, we have two
topics:

o TH : high-frequency (no
filtering)

* | ° Tx"y low-frequency (filtering

* ‘ can occur)

DynFilter Architecture

Tile-based Area-of-Interest / Subscriptions (2)

Game world divided in square Pub/Sub — Tile-based Model

tiles (Z =2) e For each tile T, we have two
topics:

o TH : high-frequency (no
filtering)

* | ° Tx"y low-frequency (filtering

* ‘ can occur)

@ All publications are done on T;’y

DynFilter Architecture

Tile-based Area-of-Interest / Subscriptions (2)

Game world divided in square Pub/Sub — Tile-based Model

tiles (Z =2) e For each tile T, we have two
topics:

o TH : high-frequency (no
filtering)

* | ° Tx"y low-frequency (filtering

* ‘ can occur)

@ All publications are done on T;’y

@ Subscriptions are done on T;’y
(black) and TXLJ (grey)

DynFilter Architecture

Tile-based Area-of-Interest / Subscriptions (2)

Game world divided in square Pub/Sub — Tile-based Model

tiles (Z =2) e For each tile T, we have two
topics:

o TH : high-frequency (no
filtering)

° Tx"y low-frequency (filtering
can occur)

@ All publications are done on T;’y

@ Subscriptions are done on T;’y
(black) and TXLJ (grey)

@ Publications are forwarded from
H L
Tx’y to Tx’y

DynFilter Architecture

Architectural Components

Game Players

/ /’Inm he CIO}:!M&@Y

LoadAnalyzer

LoadOptimizer

FilteringMatrix

Pub/Sub

Server A
Game-Specific

Redi
(Redis)] Server

Pub/Sub
Data
Collector

Message
Filter

VM_Server VM_LoadOptimizer

Load Analysis & Optimization

Load Analysis & Optimization

© Load Analysis & Optimization

Load Analysis & Optimization

Load Model

e Time unit: t (20 seconds in our experiments)

Load Analysis & Optimization

Load Model

@ Time unit: t (20 seconds in our experiments)

@ Time period: tpax units (10 min. in experiments — 30 units)

Load Analysis & Optimization

Load Model

@ Time unit: t (20 seconds in our experiments)
@ Time period: tpax units (10 min. in experiments — 30 units)

® Bjuota: max. bandwidth that can be consumed over the period

Load Analysis & Optimization

Load Model

Time unit: t (20 seconds in our experiments)

°
@ Time period: tpax units (10 min. in experiments — 30 units)
® Bguota: max. bandwidth that can be consumed over the period
°

At every time unit t:

Load Analysis & Optimization

Load Model

Time unit: t (20 seconds in our experiments)

°
@ Time period: tpax units (10 min. in experiments — 30 units)
® Bguota: max. bandwidth that can be consumed over the period
@ At every time unit t:

@ Byuseqa: bandwidth that have been used since the beginning of
the period

Load Analysis & Optimization

Load Model

Time unit: t (20 seconds in our experiments)

°
@ Time period: tyax units (10 min. in experiments — 30 units)
® Bguota: max. bandwidth that can be consumed over the period
@ At every time unit t:

@ Biseq: bandwidth that have been used since the beginning of
the period

° Brcmaining = Bquota - Buscd

Load Analysis & Optimization

Load Model

Time unit: t (20 seconds in our experiments)

°
@ Time period: tyax units (10 min. in experiments — 30 units)
® Bguota: max. bandwidth that can be consumed over the period
°

At every time unit t:

@ Biseq: bandwidth that have been used since the beginning of
the period

° BL'(‘nmiuiug — Dquota — Bus(‘d

o Biarget = Bremaining/(tmax — t) (should be consumed over the
next unit)

Load Analysis & Optimization

Load Model

Time unit: t (20 seconds in our experiments)

Time period: tyax units (10 min. in experiments — 30 units)

Bquota: max. bandwidth that can be consumed over the period

At every time unit t:

Busea: bandwidth that have been used since the beginning of
the period

BL'(‘nminiug = DPquota — Bus(‘d
o Biarget = Bremaining/(tmax — t) (should be consumed over the
next unit)

Bprev: bandwidth used over last unit

Load Analysis & Optimization

Load Model

Time unit: t (20 seconds in our experiments)

Time period: tyax units (10 min. in experiments — 30 units)

Bquota: max. bandwidth that can be consumed over the period

At every time unit t:

Busea: bandwidth that have been used since the beginning of
the period

BL'(‘nminiug = DPquota — Bus(‘d
o Biarget = Bremaining/(tmax — t) (should be consumed over the
next unit)

o Bpev: bandwidth used over last unit
o If Bprev < Btarget:

o Filtering can be reduced or canceled

Load Analysis & Optimization

Load Model

Time unit: t (20 seconds in our experiments)

Time period: tyax units (10 min. in experiments — 30 units)

Bquota: max. bandwidth that can be consumed over the period

At every time unit t:

Busea: bandwidth that have been used since the beginning of
the period

BL'(‘nminiug = DPquota — Bus(‘d
o Biarget = Bremaining/(tmax — t) (should be consumed over the
next unit)

o Bpev: bandwidth used over last unit
o If Bprev < Btarget:

o Filtering can be reduced or canceled
Else

o Filtering should be increased: too much bandwidth used

° Bremove - Bprev - Btarget

Load Analysis & Optimization

Load Optimization

Trivial Filtering

Load Analysis & Optimization

Load Optimization

Trivial Filtering

o All tiles have the same
filtering ratio!

Load Analysis & Optimization

Load Optimization

Trivial Filtering

o All tiles have the same
filtering ratio!

@ Assuming no filtering in
previous unit

Load Analysis & Optimization

Load Optimization

Trivial Filtering

o All tiles have the same
filtering ratio!
@ Assuming no filtering in

previous unit
Y F — Bremove

prev

Load Analysis & Optimization

Load Optimization

Trivial Filtering

o All tiles have the same
filtering ratio!

@ Assuming no filtering in
previous unit
Y F — Bremove

prev
o If filtering was already in
place:

o Need to extrapolate
bandwidth usage in all
low-frequency tiles as if
there was no filtering

o ldea: invert the effects
of the filtering already
in place

Load Analysis & Optimization

Load Optimization

Trivial Filtering

o All tiles have the same
filtering ratio!

DynFilter Filtering

@ Assuming no filtering in
previous unit
Y F — Bremove

prev
o If filtering was already in
place:

o Need to extrapolate
bandwidth usage in all
low-frequency tiles as if
there was no filtering

o ldea: invert the effects
of the filtering already
in place

Load Analysis & Optimization

Load Optimization

Trivial Filtering

o All tiles have the same
filtering ratio! @ Tiles have a different

filtering ratio (Fy,)

DynFilter Filtering

@ Assuming no filtering in
previous unit
Y F — Bremove

prev
o If filtering was already in
place:

o Need to extrapolate
bandwidth usage in all
low-frequency tiles as if
there was no filtering

o ldea: invert the effects
of the filtering already
in place

Load Analysis & Optimization

Load Optimization

Trivial Filtering

o All tiles have the same
filtering ratio! @ Tiles have a different

filtering ratio (Fy,)

DynFilter Filtering

@ Assuming no filtering in o _
previous unit o Filtering ratio depends on

o F — Bremove number of players in tile
prev

o If filtering was already in
place:

o Need to extrapolate
bandwidth usage in all
low-frequency tiles as if
there was no filtering

o ldea: invert the effects
of the filtering already
in place

Load Optimization

Load Analysis & Optimization

Trivial Filtering

o All tiles have the same
filtering ratio!

@ Assuming no filtering in
previous unit
Y F — Bremove

prev
o If filtering was already in
place:

o Need to extrapolate
bandwidth usage in all
low-frequency tiles as if
there was no filtering

o ldea: invert the effects
of the filtering already
in place

DynFilter Filtering

@ Tiles have a different
filtering ratio (Fy,y)

@ Filtering ratio depends on
number of players in tile

Filtering Ratio

\ |

Load Optimization

Load Analysis & Optimization

Trivial Filtering

o All tiles have the same
filtering ratio!

@ Assuming no filtering in
previous unit
Y F — Bremove

prev
o If filtering was already in
place:

o Need to extrapolate
bandwidth usage in all
low-frequency tiles as if
there was no filtering

o ldea: invert the effects
of the filtering already
in place

DynFilter Filtering

@ Tiles have a different
filtering ratio (Fy,y)

@ Filtering ratio depends on
number of players in tile

Filtering Ratio
e If £, =0 — no filtering

Load Optimization

Load Analysis & Optimization

Trivial Filtering

o All tiles have the same
filtering ratio!

@ Assuming no filtering in
previous unit
Y F — Bremove

prev
o If filtering was already in
place:

o Need to extrapolate
bandwidth usage in all
low-frequency tiles as if
there was no filtering

o ldea: invert the effects
of the filtering already
in place

DynFilter Filtering

@ Tiles have a different
filtering ratio (Fy,y)

@ Filtering ratio depends on
number of players in tile

Filtering Ratio
e If £, =0 — no filtering

e Otherwise, F ,: ratio of
messages not transfered

H L

from T2, to T,

Load Optimization

Load Analysis & Optimization

Trivial Filtering

o All tiles have the same
filtering ratio!

@ Assuming no filtering in
previous unit
Y F — Bremove

prev
o If filtering was already in
place:

o Need to extrapolate
bandwidth usage in all
low-frequency tiles as if
there was no filtering

o ldea: invert the effects
of the filtering already
in place

DynFilter Filtering

@ Tiles have a different
filtering ratio (Fy,y)

@ Filtering ratio depends on
number of players in tile

Filtering Ratio

e If £, =0 — no filtering

e Otherwise, F ,: ratio of
messages not transfered

H L

from T2, to T,

o Capped at a maximum
value

Load Analysis & Optimization

DynFilter: Computing the Filtering Ratio

Idea: determine how many bytes we need to “save” for each TXLJ

Outgoing Bandwidth

° B)’;’y, B)ay: out. bandwidth over prev. unit of T;’y, TXL,y

Load Analysis & Optimization

DynFilter: Computing the Filtering Ratio

Idea: determine how many bytes we need to “save” for each TXLJ

Outgoing Bandwidth

° B)’;’y, B)ay: out. bandwidth over prev. unit of T;’y, TXL,y

e Extrapolated outgoing bandwidth (over previous time unit of
BL
X,y

Ly ard : . gL _
Ty), if no filtering was in place: B = T—F

Load Analysis & Optimization

DynFilter: Computing the Filtering Ratio

Idea: determine how many bytes we need to “save” for each TxLyy

Outgoing Bandwidth

e BH BL : out. bandwidth over prev. unit of TH , TL

X’y' X7.y. X7.y’ X7y
e Extrapolated outgoing bandwidth (over previous time unit of
. ot . BL
TrL,). if no filtering was in place: BiL = T

Weight of tile Ty,

o Density factor based on # subscribers: D, , = log, S«

Load Analysis & Optimization

DynFilter: Computing the Filtering Ratio

Idea: determine how many bytes we need to “save” for each TxLyy

Outgoing Bandwidth

e BH BL : out. bandwidth over prev. unit of TH , TL

X’y' X7.y. X7.y’ X7y
e Extrapolated outgoing bandwidth (over previous time unit of
. ot . BL
TrL,). if no filtering was in place: BiL = T

Weight of tile Ty,

o Density factor based on # subscribers: D, , = log, S«
o Weight of tile T, ,: Wi, = (B, +B:L)-D,,

Load Analysis & Optimization

DynFilter: Computing the Filtering Ratio

Idea: determine how many bytes we need to “save” for each TxLyy

Outgoing Bandwidth

° B)’;’y, B)ay: out. bandwidth over prev. unit of T;’y, TXL,y

e Extrapolated outgoing bandwidth (over previous time unit of

L
L *L Bx,y
Ty), if no filtering was in place: B = —F,

Weight of tile T,

o Density factor based on # subscribers: D, , = log, S«
o Weight of tile T, ,: Wi, = (B, +B:L)-D,,

Computing the Filtering Ratio

o # of bytes to “save”: Q. = (Wi, /(> Wky)) - Bremove

| \

Load Analysis & Optimization

DynFilter: Computing the Filtering Ratio

Idea: determine how many bytes we need to “save” for each TxLyy

Outgoing Bandwidth

e BH BL : out. bandwidth over prev. unit of TH , TL

X’y' X7.y. X7.y’ X7y
e Extrapolated outgoing bandwidth (over previous time unit of
. ot . BL
TrL,). if no filtering was in place: BiL = T

| \

Weight of tile T,

o Density factor based on # subscribers: D, , = log, S«
o Weight of tile T, ,: Wi, = (B, +B:L)-D,,

Computing the Filtering Ratio
o # of bytes to “save”: Q. = (Wi, /(> Wky)) - Bremove
— Qxy

- *xL
vay

o Filtering ratio: F,,

Experiments

Experiments

@ Experiments

Experiments

Implementation & Experimental Setup

Implementation

@ Implemented in Java, on
top of Dynamoth

@ Pub/Sub: unmodified
open-source Redis
middleware

@ Experiments run on
DynGame (prototype
game skeletton built on
top of Mammoth)

@ DynGame: large amount
of Al-controlled players
(random-waypoint)

@ Supports flocking R

v Chat[C14)

Experiments

Implementation & Experimental Setup

Experimental Setup

@ 20 Amazon EC2 instances

@ 15 players per instance
(max 250)

@ Z = 2 (subscription to up
to 25 tiles)

@ Period of 10 minutes

@ Units of 20 seconds

Tile Overlay [0]

inve
Chat[C](4)

Experiments

Experiments

Experiment 1: FPS Game /
Scalability

@ Scalability in a FPS-like
game with many players

@ Very high frequency of
updates (20 updates/sec)

e Up to 150 players (Q3=16,
WatchMen=48)

@ 10x10 map (100 tiles)

@ Player can view up to 25% of
the map (Z =2)

o Bandwidth alloc.: 8000Mb

Experiments

wE e

Experiments -

Experiment 2. MMORPG Game
with Flocking

Scalability @ Flocking in medium-scale

@ Scalability in a FPS-like MMOGs
game with many players @ Flocking: quadratic growth in

@ Very high frequency of message delivery
updates (20 updates/sec) e Up to 250 players

e Up to 150 players (Q3=16, @ 20x20 map (400 tiles)
WatchMen=438) @ Player can view 6.2% of the

@ 10x10 map (100 tiles) map (Z =2)

@ Player can view up to 25% of @ Flocking ratio 1) between 0
the map (Z =2) and 0.5

@ Bandwidth alloc.: 8000Mb o Flocking: 4x4 centric tiles

@ Bandwidth alloc.:10000Mb

FPS Game - Results (1)

Number of Players and Total
Outgoing Bandwidth

200 16000
—— # players
180 T Total Transmitted (with
DynFilter) 14000
------ Total Transmitted (without /'
160 DynFilt :
ynFitter) 12000

mb)

=
o
[=}
o
o
(

+8000

6000

Total Transmitted

4000

2000

0 - 0
01 2 3 456 7 8 910
Time (minutes)

Experiments

FPS Game - Results (1)

Number of Players and Total
Outgoing Bandwidth

200 16000
—— # players
180 T Total Transmitted (with
DynFilter) 14000
------ Total Transmitted (without /'
160 DynFilt :
ynFilter) /12000
o)
10000 E
e}
Q
=1
.+8000 E
‘ g
©
6000 &
8
o
4000
2000

0 - 0
01 2 3 456 7 8 910
Time (minutes)

Experiments

State Updates per Sec

200 25

——# players

1
80— Averaged # updates / sec

160

Number of players
0
S

D
o

0 0
012 3 456 7 8 910

Time (minutes)

State updates per second

Experiments

FPS Game - Results (2)

— Bandwidth savings of 43%.

Filtering Ratio Heat Maps:

t=123: F=0.14

Experiments

FPS Game - Results (2)

— Bandwidth savings of 43%.

Filtering Ratio Heat Maps:

t=123: F=0.14 t=4 F=0.73

Experiments

FPS Game - Results (2)

— Bandwidth savings of 43%.

Filtering Ratio Heat Maps:

t=123: F=0.14 t=4 F=0.73 t =87 F =054

Experiments

MMORPG - Results (1)

Flocking Ratio and Total
Outgoing Bandwidth

07— Y (Flocking Ratio) 20000
----- Total Transmitted (with
0.6 DynFilter) 18000
T — Total Transmitted (without 16000
DynFilter) ,

05 14000,
o 12000é
504 3
o h=1
= 10000
= 2
503 8000 S
(TR —_

©

0,2 6000 é

4000

o
i

2000

0 0
012 3 456 7 8 910
Time (minutes)

Experiments

MMORPG - Results (1)

Flocking Ratio and Total ate Updates per Seco

Outgoing Bandwidth
L —T (Flocking Ratio) 20000 L p—ry (Flocking Ratio) 45
----- Total Transmitted (with ----- Averaged # updates / sec
DVNFi 8000 | @ L.i S e ..
06 ynFilter) : 0.6 \ !
T - Total Transmitted (without 16000 ! N !
DynFilter) | | ! 3,5
0,5 14000 05 L ' 2
i) ' ! o
° 120005 [" g
504 Bl 2oa4 ’ : o
-y 10000 | % : ol
203 £l o3 : g
8" 8000 S g0 g
(T} = o =1
02 6000 o 0.2 g
n
4000
0,1 0,1
2000
0 0 0 0
012 3 456 7 8 910 0 1 2 3 .45 6 7 8 9 10
Time (minutes) Time (minutes))

Experiments

MMORPG - Results (2)

— Bandwidth savings of 38%.

Filtering Ratio Heat Maps:

t =3.5; ¢ = 0.21

Experiments

MMORPG - Results (2)

— Bandwidth savings of 38%.

Filtering Ratio Heat Maps:

t =3.5; ¢ = 0.21

Experiments

MMORPG - Results (2)

— Bandwidth savings of 38%.

Filtering Ratio Heat Maps:

t=3.5;9v=0.21 t=17.3;¢¥=0.15

Conclusion

wE e

Conclusion & Future Work

© Conclusion

Conclusion

wE e

Conclusion

@ DynFilter: middleware designed to adaptively filter game state
update messages

Conclusion

wE e

Conclusion

@ DynFilter: middleware designed to adaptively filter game state
update messages

@ Limiting bandwidth use within games in a Cloud setting

Conclusion

wE e

Conclusion

@ DynFilter: middleware designed to adaptively filter game state
update messages

@ Limiting bandwidth use within games in a Cloud setting

@ Meeting predefined quotas

Conclusion

wE e

Conclusion

DynFilter: middleware designed to adaptively filter game state
update messages

Limiting bandwidth use within games in a Cloud setting

Meeting predefined quotas

Full state updating for close entities

Conclusion

wE e

Conclusion

@ DynFilter: middleware designed to adaptively filter game state
update messages

@ Limiting bandwidth use within games in a Cloud setting

e Meeting predefined quotas

@ Full state updating for close entities

@ Per-tile filtering (adapts to volume of players in tiles)

Conclusion

wE e

Conclusion

@ DynFilter: middleware designed to adaptively filter game state
update messages

Limiting bandwidth use within games in a Cloud setting
Meeting predefined quotas

Full state updating for close entities

Per-tile filtering (adapts to volume of players in tiles)
Experiments: FPS and MMORPG

Conclusion

wBlw

Conclusion

@ DynFilter: middleware designed to adaptively filter game state
update messages

Limiting bandwidth use within games in a Cloud setting
Meeting predefined quotas

Full state updating for close entities

Per-tile filtering (adapts to volume of players in tiles)
Experiments: FPS and MMORPG

Important bandwidth savings while maintaining a minimal
update frequency

Conclusion

wE e

Future Work

e N-Layered Filtering

Conclusion

wE e

Future Work

@ N-Layered Filtering

@ Quality of Experience evaluations

Conclusion

wE e

Future Work

@ N-Layered Filtering
@ Quality of Experience evaluations

o Classification of game messages (only some messages could be
dropped)

o Can exploit to the Pub/Sub layer for that: dropping messages
from some topics only

Conclusion & Future Work

Thank you for your attention!

	Introduction and Background
	DynFilter Architecture
	Load Analysis & Optimization
	Experiments
	Conclusion

