
DynFilter: Limiting Bandwidth of Online Games
using Adaptive Pub/Sub Message Filtering

Julien Gascon-Samson, Jörg Kienzle, Bettina Kemme
School of Computer Science, McGill University

Montreal, QC H3A 0E9, Canada
Email: {Julien.Gascon-Samson}@cs.mcgill.ca,{Joerg.Kienzle,Bettina.Kemme}@mcgill.ca

Abstract—Multiplayer online games can generate a lot of
server-related outgoing bandwidth, due to many factors such
as highly variable amounts of players or the gathering of many
players towards the same in-game locations. Predicting the exact
amount of required bandwidth to support varying conditions
can be costly, and players can experience game-wide failures if
bandwidth is insufficiently provisioned. We present DynFilter,
a game-oriented message processing middleware designed to
adaptively filter state update messages for in-game entities located
apart, in order to reduce bandwidth needs and stay within
predefined quotas. We ran experiments on Amazon EC2 over
a prototype game mimicking a FPS and a MMOG. Our results
show that DynFilter is properly able to maintain bandwidth use
within the pre-established quotas while still maintaining adequate
delivery of relevant state update messages.

I. INTRODUCTION

Multiplayer online games typically feature a large amount
of players in the same shared virtual environment. Managing a
large volume of players can be very challenging from a game
operator’s perspective, due to the fact that not only the game
server, but also players must be aware of actions performed by
other players or entities. Each action performed by any player
or entity typically generates a game-specific state update
message. Thus, as the number of players increases, bandwidth
consumption within a game will grow at a faster-than-linear
rate.

In order to maintain game immersion and gameplay quality,
game state update messages must be delivered within specific
time bounds and/or at specific frequencies. In First Person
Shooter (FPS) games, messages are often delivered at a rate
of about 20 updates per second due to the fast-paced nature
of such games [14], [3]. FPS games feature smaller amounts
of players. In Massive Multiplayer Online Games (MMOGs),
update frequencies are much lower - a few updates per second;
however, they usually have much larger amounts of players.

The amount of players in a given game at any given
time is not constant: players are more likely to be playing
at certain periods of the day or of the week [13]. Also,
because MMOGs feature large-scale virtual worlds, players
in such games often exhibit flocking behavior [11], [6], where
a large amount of players gather towards the same popular
locations on the map (towns, popular quests, etc.). Flocking
can draw a lot of outgoing bandwidth from the servers since
the number of messages that need to be transmitted within the
flocking area increases in a near-quadratic way. If not handled

properly, it can cause a game to collapse1. Thus, because of
those phenomena, bandwidth use within a game is subject to
variation over time.

Tile-Based Interest Management: If the size of the virtual
world is large enough, it might not make sense for all players
to receive state updates from all other entities in the whole
virtual world. Interest management (IM) techniques are often
used in games to limit the amount of messages that need to be
transmitted by allowing players to receive updates only from
players and entities located within a given area around them
[4]. A typical approach is to split the game world into a set of
tiles - tile-based IM - usually triangles, squares or hexagons. A
player then receives updates for all other players located in her
tile as well as in surrounding tiles, perhaps based on how far
the player can see. Tile-based IM techniques alone, however
may not be enough to support a sudden surge of additional
players and become way less efficient if flocking happens.

Managing Bandwidth Needs: In order to support the
variable outgoing bandwidth needs of online games, game
operators typically provide their own server infrastructure. For
games with a very large player base, a large amount of servers
can be required. For instance, World of Warcraft, a popular
MMOG, features over 250 servers2 in order to support a
playing base of millions of players. Bandwidth provisionning
can be very challenging, since under-provisioning can cause
the game to quickly become unplayable if a sudden burst of
load is experienced3. Provisioning for the worst-case scenario
will lead to servers being under-used most of the time.

With the advent of the Cloud, game providers may also opt
to rent virtualized servers to benefit from increased scalability.
However, outgoing bandwidth in a Cloud setting can incur
significant expenses [2], especially when flocking happens.
Game operators might wish to establish a maximum fixed
budget that they are willing to spend per time period in order
to better control and plan the costs of running their game,
especially in the wake of indie or crowd-funded games.

DynFilter: In this paper, we propose DynFilter as a solution
to above mentioned problems. DynFilter is a pub/sub-based
middleware for online games which aims at limiting bandwidth

1http://www.gamespot.com/articles/blizzard-addresses-warlords-of-draenor-
server-prob/1100-6423584/ [Aug 18, 2015]

2Decoupled into different game instances. Reference:
http://us.battle.net/wow/en/status [Aug 18, 2015]

3http://www.cinemablend.com/games/World-Warcraft-Warlords-Draenor-
Release-Marred-By-Server-Downtime-Lag-68412.html [Aug 19, 2015]

use by filtering update messages for entities located far away
from each other in the game map, in order to respect target
bandwidth constraints. The rationale behind DynFilter is based
on the fact that it can be acceptable to discard some of the state
update messages for entities that are located farther apart in
the player’s vision range without compromising the game play.
Transparently discarding a portion of the state update messages
can lead to significant reductions in bandwidth needs, and
can lead to the following goals: (1) respecting a predefined
Cloud-based bandwidth-related budget and (2) preventing the
game from becoming unplayable due to a bandwidth use
that would be above the allocated resources. In particular,
DynFilter is based on channel-based publish/subscribe where
tiles are considered as channels and players (and other relevant
entities) are considered as subscribers / publishers, and where
some of the state update publications can be dropped to lower
bandwidth use.

This paper notably provides the following contributions:
• Game operators can define a maximum target outgoing

bandwidth that they are willing to allocate over a given
window as well as a maximum filtering (degradation of
quality) that is allowed for each tile.

• Filtering is only applied to subscribers on remote tiles:
state updates from players/entities located in the same tile
(or group of tiles) are always delivered.

• A load analyzer module continuously monitors the
pub/sub server with minimal overhead and analyzes the
bandwidth that has been used in the current window.
If needed, the load optimizer applies adaptive message
filtering to reduce the amount of messages that need to be
disseminated, in order to stay below the target bandwidth.

• Our algorithmic model automatically adapts filtering for
each game tile based on the number of subscribers in the
tile. Filtering is continuously recomputed.

• DynFilter is built as a thin layer over an unmodified
pub/sub middleware (Redis [1]). It is also completely
transparent and non-obtrusive to game players.

II. DYNFILTER ARCHITECTURE

A. Tile-based Area-of-Interest and Message Delivery

In DynFilter, the game world is divided into a set of
interconnected square tiles4. Assuming a world grid made
of X columns and Y rows, we have a total of XY tiles
labelled as follows: Tx,y where x ∈ {0, . . . , X − 1} and
y ∈ {0, . . . , Y − 1}. Considering that a given player P is
located in one and only one tile Txp,yp at any given time, we
define the subscription range Z as how many tiles around the
player’s current tile P will subscribe to in order to receive
updates from other players and in-game entities. Formally, P
will receive updates in all tiles Tx,y|x ∈ {xp − Z, . . . , xp +
Z}, y ∈ {yp − Z, . . . , yp + Z}.

DynFilter makes sure that P receives all state updates in
it’s own tile (Txp,yp). For surrounding tiles, state updates can

4Square tiles have been chosen because they simplify our spatial model.
However, our model can easily be adapted to other tile configurations. For
instance, if using triangular tiles, one could simply index each tile and
substitute Fx,y by a 1-dimensional array.

*
*
**

Figure 1: DynFilter Tiles Example

be filtered, if needed. The impact of such filtering is greatly
mitigated by the fact that players and entities located within
these tiles are located farther apart from the player. Games
typically make use of dead reckonning techniques [15], [10]
to interpolate player positions between state updates. The
inaccuracies in on-screen player positions (difference between
dead-reckonned position and real position) will appear smaller
for entities located farther away. Figure 1 gives an example
of which tiles a given player located in the dark tile will be
subscribing to (in that case, Z = 2): the black tile represents
a subscription to it’s own tile (unfiltered) and the grey tiles
represent a subscription to surrounding tiles (can be filtered).
Players are denoted as small dots.

All messages are delivered using a publish/subscriber server
that supports topic-based pub/sub, which may be run on the
same machine as the game server, perhaps as part of the same
process, for small-to-medium scale games. Alternatively, the
pub/sub server can be run on a different machine, but in the
same LAN or Cloud. Also, for large to epic-scale games,
multiple pub/sub servers located on several VMs could be used
to provide additional bandwidth [8].

B. Architectural Components
The DynFilter architecture is made of several distributed

components. A high-level overview is presented in Figure 2,
in a Cloud setting. A virtual machine (VM_Server) contains an
instance of the pub/sub server (in our case, Redis, but any other
suitable topic-based pub/sub server would be fine), coupled
with a data collector component whose goal is to collect real-
time data about all channels that currently exist on the pub/sub
server, in a non-obtrusive way.

Aggregated data is periodically transmitted to the load
analyzer module, which is located on a different VM, but
in the same Cloud to reduce bandwidth overhead and costs
(VM_LoadOptimizing). The load analyzer module determines
if the allocated bandwidth quota for the current time period
will be respected, based on previous bandwidth use and based
on aggregate data received by the data collector (please refer
to section III-A). A load optimizer module then computes
a new filtering matrix (described at section III-B), which is
transmitted to the message filter component, located on the
same VM as the pub/sub server. The filtering matrix, which
will be discussed later, is used to inhibit the delivery of some
of the publications.

C. Message Filtering
In order to implement the described filtering behavior,

DynFilter generates two pub/sub channels on the pub/sub

Figure 2: DynFilter Architecture Overview

server for each tile Tx,y , as follows: (1) TH
x,y (high-frequency -

no filtering) and TL
x,y (low-frequency - filtering can occur). A

given player P in tile Txp,yp would subscribe to channel TH
xp,yp

(receive all state updates in it’s own tile) and would subscribe
to channels TL

x,y|x ∈ {xp − Z, . . . , xp + Z} \ xp, y ∈ {yp −
Z, . . . , yp+Z}\yp (receive potentially filtered updates for all
surrounding tiles). P always publishes to TH

xp,yp
. Therefore,

no game entity or player will directly publish to any low-
frequency TL

x,y channel.
DynFilter’s message filter component is in charge of for-

warding some or all of the publications from high-frequency
channels (TH

x,y) to low-frequency channels (TH
x,y). It accom-

plishes that goal using the latest available filtering matrix Fx,y

that has been computed by the cost optimizer. In our model,
Fx,y is a 2-dimensional array that contains a filtering ratio
for each tile Tx,y , between 0.0 (all messages are forwarded to
TL
x,y - no filtering) and 1.0 (no message is delivered - this is

not desirable so in practise, we provide an upper bound).
The message filter component subscribes to all high-

frequency tile channels (TH
x,y), which does not incur additional

network overhead since it is local (on the same machine as the
pub/sub server). For each high-frequency update at tile Tx0,y0

,
it does the following: (1) obtain the filtering ratio Fx0,y0

from
the filtering matrix Fx,y; (2) generate a random floating-point
number between 0 and 1; (3) if the generated number is greater
than Fxo,yo

then (4) forward the publication to TL
x0,y0

(if the
generated number is smaller than Fxo,y0

, then the message is
not forwarded; thus, subscribers of TL

x0,y0
will not receive it).

D. N-Layered Message Filtering
The DynFilter architecture is two-layered: the first layer

(high-frequency) ensures full delivery of all messages and
the second layer might allow for partial delivery. While it
is possible to alter the various parameters such as the sub-
scription range Z and the size of the tiles, for some games
requiring finer granularity, DynFilter could be extended to
introduce additional layers of message filtering to allow for
a partial degradation in the amount of state updates received
as the distance grows (future work). When playing at very
high resolutions on large displays, players might want to be
able to see objects located very far away. N-Layered filtering
could be used to allow players to view remote objects at a
very low update frequency.

III. COST ANALYSIS AND OPTIMIZATION

The main goal of the DynFilter load optimization process
is to make sure that the allocated bandwidth quota for the
current time period will be respected by filtering game update
messages sent to subscribers of low-frequency tile channels.

A. Load Model & Analyzing

DynFilter defines the concepts of a time unit and a time
period. A bandwidth quota (Bquota) is allocated for a given
time period (10 minutes in our experiments) and is made of
tmax time units (20 seconds in our experiments). Bquota is
defined by the game operator (possibly by taking into account
the outgoing Cloud bandwidth costs or the capabilities of it’s
current infrastructure). At every time unit t, the bandwidth that
has been consumed since the beginning of the current period
(Bused) is evaluated by the load analyzer. The load analyzer
then computes the bandwidth that is remaining until the end
of the period: Bremaining = Bquota − Bused.

From the remaining bandwidth, a target bandwidth alloca-
tion is then computed for the next unit, which is the average
amount of bandwidth that the game should consume in all
remaining time units throughout the end of the period, in order
to respect Bquota. It is defined at equation 1.

Btarget = Bremaining/(tmax − t) (1)

The next step is to determine if, by consuming bandwidth
at the current rate, the game would go over Bquota. To do so,
the load analyzer first considers the bandwidth that has been
consumed in the last unit (Bprev)5. If Bprev ≤ Btarget, then
filtering can be reduced or cancelled if it is no longer needed,
since we are currently using less bandwidth than allowed.
However, if Bprev > Btarget, then we are currently using
too much bandwidth, and we need to lower bandwidth use.
We define Bremove as the bandwidth that we need to remove
in the next time unit as follows: Bremove = Bprev − Btarget.
By knowing how much bandwidth we need to remove, the
load optimizer then computes an appropriate filtering matrix,
as explained at the following section.

B. Load Optimization

The filtering ratio Fx,y for tile Tx,y was defined as the ratio
of messages that should not be delivered to TL

x,y .
Trivial filtering: Assuming for simplicity that there was

no filtering in the previous time unit, by knowing the number
of bytes to remove (Bremove) as well as the number of
bytes consumed in the previous time unit (Bprev), we can
compute one global filtering ratio F for all tiles as follows:
F = Bremove

Bprev
. If there was already filtering in place, then we

need to compute an extrapolation of the bandwidth that would
have been consumed in all low-frequency tiles over the last
unit if no filtering was in place, by inverting the effects of
the filtering already in place, following a similar process as

5We initially considered using the averaged bandwidth over all time units
since the beginning of the period. We found out that this approach worked
well only if the bandwidth did not vary too much. By taking the bandwidth
over the last time unit only, we are able to react quickly to sudden variations.

described in equation 2. We would then obtain an extrapolated
version of Bremove and Bprev which would yield an accurate
computation of F .

We want to go beyond trivial filtering and consider the
specificites of each tile as per the following rationale: filtering
can be stronger on tiles with many players since the updates
of any individual player will be less apparent in a crowd. In
addition, players usually closely follow only a limited amount
of players at the same time and pay less attention to the
others [3], [14]. On the contrary, filtering should be lower
on tiles with fewer players. DynFilter proposes an algorithm
to compute a varying filtering ratio for each tile while still
respecting bandwidth quotas.

DynFilter filtering: In order to obtain a filtering ratio
for each tile Tx,y , we need to determine how many bytes we
should save for every low-frequency TL

x,y tile channel. The
idea is that the number of bytes that we should remove from
each tile channel should be proportional to the total outgoing
bytes of that tile channel for the previous unit. However, we
multiply the number of bytes to be removed by a density factor
Dx,y that is logarithmic to the number of subscribers in that
tile, to take the number of subscribers in the tile into account.

Let Sx,y be the number of subscribers in Tx,y , BH
x,y the

outgoing bandwidth (over the previous time unit) of channel
TH
x,y and BL

x,y the outgoing bandwidth of TL
x,y . Again, as it

was the case with trivial filtering, BL
x,y depends on the filtering

ratio Fx,y used in the last time unit. In order to get accurate
bandwidth computations, we define B∗L

x,y as the extrapolated
outgoing bandwidth, which is a projected value of TL

x,y without
the effects of filtering (equation 2).

B∗L
x,y =

BL
x,y

1− Fx,y
(2)

For every tile, we compute the density factor Dx,y as
follows: Dx,y = log2 Sx,y . We then compute the weight factor
for tile Tx,y by multiplying the total extrapolated bandwidth
with the density factor (equation 3).

Wx,y = (BH
x,y +B∗L

x,y) ·Dx,y (3)

We define the sum of the weight factors as follows: WT =∑
Wx,y . For each tile Tx,y , we can then compute how many

bytes we need to remove from channel TL
x,y (equation 4).

Qx,y = (Wx,y/WT) ·Bremove (4)

By knowing Qx,y , we compute the filtering ratio for tile
Tx,y using equation 5 (ratio of bytes to remove to the number
of extrapolated outgoing bytes that flowed through TL

x,y over
the last time unit).

Fx,y =
Qx,y

B∗L
x,y

(5)

Note that a maximum value can be set for Fx,y so that we
can ensure that a minimal ratio of state update messages will
be forwarded (in our experiments, it is set to 0.75) so at least
25% of the state update messages will be sent accross all tiles.

The load optimizer then transmits the matrix of all filtering
ratios to the message filter component that applies it.

IV. EXPERIMENTS

A. Implementation and Experimental Setup

We implemented DynFilter in Java on top of the Dynamoth
pub/sub-based message dissemination infrastructure. Pub/sub
is provided by unmodified Redis middleware (open-source).
We ran our experiments on DynGame, which is a prototype
game skeletton that reuses some components of the Mammoth
project [9]. DynGame can support a large amount of players
that randomly move and uses square tiles. Publications and
subscriptions are made according to the DynFilter model.

Experiments have been run in the Cloud over a set of
20 Amazon EC2 instances: one m3.medium instance for the
pub/sub server, data collector and message filter components;
one m3.medium instance for the load analyzer and the load
optimizer; one t2.micro instance for experimental data col-
lection and 17 t2.micro instances to run our game players.
We determined that we were safely able to run 15 players
per instance, up to a maximum of ~250 players. While our
implementation has been designed to support multiple pub/sub
servers, we decided to limit our experiments to only one
pub/sub server for simplicity reasons.

We considered a subscription range Z = 2 (players sub-
scribe to 25 surrounding tiles, please refer to Figure 1), except
for players located near edges. The subscription to the central
tile is at high-frequency (TH

x,y) (all messages are received) and
the subscriptions to the other tiles is at low-frequency (TL

x,y)
(messages can be dropped).

B. Experiment 1: FPS Game / Scalability

Description: The goal in this experiment was to assess
the scalability of DynFilter and its bandwidth-limiting capa-
bilities in the context of a FPS-like game with many players.
A typical FPS has a limited amount of players because of the
high-bandwidth that is needed to support the high frequency
of updates and the vision range for all players. For instance,
WatchMen, which was based on a modified version of Quake
3, supported up to 48 players in the same game [14] (the
original Quake 3 supported only 16 players).

We setup a map with up to 150 players and 100 tiles
(10x10), with Z = 2. That means that any player would be
able to view up to 25% of the map at any given time, which
makes sense since FPS maps are generally smaller-scale. As
mentioned in the introduction, because of the fast-paced nature
of FPS games, players optimally receive up to 20 state updates
per second.

We progressively injected up to 150 players in the game,
then reduced to 50 players, then increased again up to 125. We
allocated a bandwidth threshold of 8000 Mb for the duration
of the period (10 minutes), with units of 20 seconds (load
analyzing and optimizing occured every 20 seconds).

Results: Figure 3 details our results for the FPS ex-
periment. On Figures 3a and 3b, until about 3 minutes,
we can see that no filtering occured on low-frequency tile
channels (all state updates are transmitted). Afterwards, due
to the highly increasing load caused by the large amount of
players, filtering starts to occur. The frequency of state updates
received on low-frequency tile channels progressively drops

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180

200

0

2000

4000

6000

8000

10000

12000

14000

16000
players
Total Transmitted (with
DynFilter)
Total Transmitted (without
DynFilter)

Time (minutes)

N
um

be
r

o
f
pl

a
ye

rs

To
ta

l T
ra

ns
m

itt
e
d

(m
b)

(a) Number of Players and Total Out-
going Bandwidth

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180

200

0

5

10

15

20

25

players
Averaged # updates / sec

Time (minutes)

N
um

be
r

o
f p

la
ye

rs

S
ta

te
 u

pd
a

te
s

pe
r

se
co

nd

(b) State Updates per Second

Figure 3: FPS Game / Scalability Experiment Results

(a) t = 2.3; F̂ = 0.14 (b) t = 4; F̂ = 0.73 (c) t = 8.7; F̂ = 0.54

Figure 4: Filtering Ratio Heat Map / FPS Game

until it reaches an average of 5 updates per second, which is
the minimum frequency allowed for this experiment. Despite
having a reduced frequency, player avatars will still appear to
be fluid since updates will still be received at least at every 200
ms, and filtering only applies to players being farther appart
(in different tiles). As mentioned previously, dead reckonning
will compensate for some missing updates.

We then observe that as the number of players starts to
shrink (at about 4 minutes), the number of updates per second
start to raise again until it reaches 20, which means that no
filtering occurs - all state update messages are delivered to low-
frequency tile channels. Then, as the number of players raise
again above a certain threshold and up to 125, the number of
updates per second starts to shrink again down to ~8 updates
per second, which is a best compromise on degradation that
will ultimately lead to a total bandwidth use of 8000 Mb at the
end of our period; thus, respecting our predefined bandwidth
quota. Overall, 8000 Mb have been used instead of 14000 Mb,
thus representing a bandwidth saving of 43%.

Figure 4 illustrates the averaged filtering ratio (F̂ , which
is the filtering ratio that would be equivalent to the current
global reduction in bandwidth if all tiles had the same filtering
ratio) for all 100 tiles, at time snapshots t = 2.3, t = 4 and
t = 8.7. White means that no filtering is in effect for a given
tile (or no player is in that tile), dark grey means that filtering
is at up to 75% and intermediate shades of grey illustrate an
intermediate filtering ratio. We notice that as the number of
players increases, the filtering ratios increase in roughly the
same way accross the whole game map (except for tiles with
no players) since the density of players is similar.

0 1 2 3 4 5 6 7 8 9 10
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000Ψ (Flocking Ratio)
Total Transmitted (with
DynFilter)
Total Transmitted (without
DynFilter)

Time (minutes)

F
lo

ck
in

g
R

a
tio

To
ta

l T
ra

ns
m

itt
e

d
(m

b)

(a) Flocking Ratio (ψ) and Total Out-
going Bandwidth

0 1 2 3 4 5 6 7 8 9 10
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5Ψ (Flocking Ratio)
Averaged # updates / sec

Time (minutes)

F
lo

ck
in

g
R

a
tio

S
ta

te
 u

pd
a

te
s

pe
r

se
co

nd

(b) State Updates per Second

Figure 5: MMOG Game Experiment Results

(a) t = 3.5; ψ = 0.21 (b) t = 6; ψ = 0.50 (c) t = 7.3; ψ = 0.15

Figure 6: Filtering Ratio Heat Map / MMOG Game

C. Experiment 2: MMO Game with Flocking

Description: In this experiment, we wanted to assess how
DynFilter was able to handle the case of flocking within a
medium-scale MMO game. Flocking refers to situations were
many players gather towards the same location on the map,
which can put a strain on the system since the number of state
updates to be transmitted grows quadratically.

Since MMOGs are slower-paced games compared to FPS,
we settled for an update rate of 4 updates per second. Also,
since game worlds are much larger, we opted for 400 tiles
(20x20). Thus, with a subscription span of 25 tiles, players
only see a maximum of 6.2% of the map. We allocated a
bandwidth quota of 10000 Mb for the 10-minutes period. We
quickly injected 250 players in the map (which in itself would
not go above the quota; thus, would not trigger the use of
filtering). In this experiment, when flocking, a given player
will be quickly moving towards the center 4x4 tiles of the
map and will remain within those tiles.

After injecting 250 players, we slowly increased the flocking
ratio (ψ) from 0 to 0.5, which meant that up to 50% of the
players were eventually located in the 16 centric tiles, thus
greatly increasing player density and the number of messages
that the pub/sub server had to deliver (near-quadratic growth).

Results: Figure 6 describe our results for the MMOG
experiment. At time t = 1, ψ slowly starts to increase. After
3 minutes, when ψ reaches ~30%, DynFilter starts applying
filtering in order to reduce the amount of messages that need
to be transmitted and thus, the bandwidth use. In Figure 5b, we
observe that the average number of state updates per second for
low-frequency tile channels starts to reduce until it reaches 1

(minimum allowed in this experiment), in order to compensate
for the drastic increase of bandwidth. At t = 6, ψ slowly starts
to decrease (players stop flocking and slowly move elsewhere
to a random location anywhere in the map). In reaction to
the reduction in bandwidth use, the average number of state
updates per second starts growing again until it reaches 4 (low-
frequency tile channel filtering disabled).

At the end of the quota, a bit less than 10000 Mb had been
used since in the last minutes, we transmitted messages at the
same rate as high-frequency tile channels, which led to using
less than the allowed quota. Overall, DynFilter was able to
save 38% of the bandwidth.

Figure 6 shows a snapshot of the distribution of the filtering
ratios accross all tiles. At time t = 3.5, when flocking slowly
starts to happen; the load optimizer starts increasing filtering
ratios globally with a small emphasis on the center tiles. At
time t = 6, filtering gets more important and really more
concentrated in the center of the map. At time t = 7.3, when
flocking is being reduced, we observe that flocking ratios in
the center tiles gets less emphasized. This Figure showed that
DynFilter was able to adjust it’s filtering based on the density
of the tiles, in order to ensure that tiles with a lower amount
of players would keep sending updates at a higher frequency
despite the overall reduction in bandwidth, to account for the
fact that players are more likely to notice individual players
in lower-density tiles compared to higher-density tiles.

V. RELATED WORK

To the best of our knowledge, no work has been done in the
field of automatically filtering/throttling publications in topic-
based pub/sub systems; therefore, we think that our work is
a novel approach and that it is well suited for games. Also,
very few pub/sub systems optimized towards games have been
proposed. The Mammoth massively multiplayer game frame-
work [9] features a network engine that proposes a pub/sub-
like topic-based interface. Dynamoth [8] is a scalable topic-
based pub/sub middleware oriented towards applications with
tight latency requirements such as games. In [5], the authors
evaluate how different pub/sub architectures (channel-based
and content-based) can be used in the context of MMOGs
to efficiently process message delivery as well as some other
game-related tasks such as interest management.

Restricting Bandwidth : WatchMen [14] and Donnybrook
[3] propose mechanisms to reduce bandwidth use in P2P-based
FPS games by reducing the rate at which updates are delivered
for players located outside of other player’s vision range. More
specifically, full updates are sent only to the k-most interested
players within a given player’s vision range. Players located
in the vicinity but not in list of k-most interested players
receive different, less frequent messages, that contain data
used to aid in performing dead reckonning. Finally, players
located very far receive sporadic state update messages. Thus,
these approaches do not only vary the frequency of message
delivery, but also the contents of state updates. In contrast,
we adjust the update frequency depending on the number of
players in the vicinity. Some other P2P schemes have also
been proposed to reduce bandwidth while supporting varying

conditions [16]. A drawback is that P2P is prone to less-
predictable latencies and bandwidth capabilities.

Some load-balancing MMO game architectures have been
developed to try to mitigate the impacts of flocking in terms of
bandwidth needs by dynamically reassigning load to different
servers when needed [6]. However, they do not lead to a de-
crease in bandwidth needs; thus, costs can still be significant.

Cloud Gaming: Cloud gaming has been a hot research
topic in the last few years. It involves running whole games
(clients and servers) in the Cloud: game players play using thin
clients that stream a live video of the game and transmit user
input back to the server. While there are interesting properties
such as increased security and the ability to play on multiple
devices with minimal porting efforts, there are also drawbacks
such as high Cloud bandwidth use (might be expensive) and
high client bandwidh use, which might be limited and might
be very costly on mobile data plans, despite using degradation
techniques [7]. Latencies will also be higher [12], which might
be problematic for latency-sensitive games such as FPS.

VI. CONCLUSION

We proposed DynFilter, a middleware designed to adap-
tively filter game state update messages in order to limit
bandwidth use within a game to a predefined threshold. A
major contribution is that our platform does per-tile filtering
in order to adjust filtering levels to the number of players in
each tile. We ran experiments in the context of FPS games with
a high-frequency of updates and in the context of MMOGs
with flocking. In both cases, DynFilter was correctly able to
limit bandwidth use while maintaining the normal flow of the
gameplay. As future work, we would like to extend our model
to include N-Layered filtering.

REFERENCES

[1] Redis website (2013), http://www.redis.io/
[2] Amazon EC2. http://aws.amazon.com/en/ec2/pricing/ (2015)
[3] Bharambe, A., Douceur, J.R., Lorch, J.R., Moscibroda, T., Pang, J., Seshan, S.,

Zhuang, X.: Donnybrook: Enabling large-scale, high-speed, peer-to-peer games.
In: ACM SIGCOMM 2008 Conf. on Data Communication. pp. 389–400

[4] Boulanger, J.S., Kienzle, J., Verbrugge, C.: Comparing interest management
algorithms for massively multiplayer games. In: NetGames 2006

[5] Cañas, C., Zhang, K., Kemme, B., Kienzle, J., Jacobsen, H.A.: Publish/subscribe
network designs for multiplayer games. In: Middleware 2014. pp. 241–252 (2014)

[6] Chen, J., Wu, B., Delap, M., Knutsson, B., Lu, H., Amza, C.: Locality aware
dynamic load management for massively multiplayer games. In: PPoPP 2005. pp.
289–300 (2005)

[7] Claypool, M., Finkel, D., Grant, A., Solano, M.: Thin to win? network performance
analysis of the onlive thin client game system. In: NetGames 2012. pp. 1–6 (2012)

[8] Gascon-Samson, J., Garcia, F.P., Kemme, B., Kienzle, J.: Dynamoth: A scalable
pub/sub middleware for latency-constrained applications in the cloud. In: ICDCS
2015. pp. 486–496 (June 2015)

[9] Kienzle, J., Verbrugge, C., Kemme, B., Denault, A., Hawker, M.: Mammoth: a
massively multiplayer game research framework. In: Foundations of Digital Games
(FDG). pp. 308–315 (2009)

[10] Pantel, L., Wolf, L.C.: On the suitability of dead reckoning schemes for games.
In: NetGames 2002. pp. 79–84 (2002)

[11] Pittman, D., GauthierDickey, C.: A measurement study of virtual populations in
massively multiplayer online games. In: NetGames 2007. pp. 25–30 (2007)

[12] Shea, R., Liu, J., Ngai, E.H., Cui, Y.: Cloud gaming: architecture and performance.
Network, IEEE 27(4), 16–21 (July 2013)

[13] Tarng, P.Y., Chen, K.T., Huang, P.: An analysis of wow players’ game hours. In:
NetGames 2008. pp. 47–52 (2008)

[14] Yahyavi, A., Huguenin, K., Gascon-Samson, J., Kienzle, J., Kemme, B.: Watch-
men: Scalable cheat-resistant support for distributed multi-player online games.
In: ICDCS 2013. pp. 134–144 (July 2013)

[15] Yahyavi, A., Huguenin, K., Kemme, B.: Interest modeling in games: The case of
dead reckoning. Multimedia Syst. 19(3), 255–270 (Jun 2013)

[16] Yahyavi, A., Kemme, B.: Peer-to-peer architectures for massively multiplayer
online games: A survey. ACM Comput. Surv. 46(1), p1–51 (2013)

