
Monitoring Large-Scale Location-Based
Information Systems

Hammad Khan, Julien Gascon-Samson, Jörg Kienzle, Bettina Kemme

School of Computer Science, McGill University
Montreal, QC H3A 0E9, Canada

Email: Julien.Gascon-Samson@mail.mcgill.ca,{Joerg.Kienzle,Bettina.Kemme}@mcgill.ca

Abstract—Monitoring the state of a distributed virtual
world is challenging for several reasons: 1) the distributed
information must be gathered in real-time without affecting the
performance of the information system; 2) in large-scale systems
it is impossible for a single node to collect and process all the data;
3) the vast information must be filtered and aggregated according
to what the human observer wants to focus on, and 4) the point
of interest of the observer can change frequently. In this paper
we present and evaluate a non-intrusive monitoring middleware
that addresses these challenges by dynamically partitioning the
geographic map (e.g., of the virtual world or the game) in terms of
map objects and (expected) state changes. We assign a different
collector node to each of these partitions to collect and pre-
process the data, and forward it to a central monitoring node.
Furthermore, we provide mechanisms to efficiently filter and
aggregate location changes, the pre-dominant changes in location-
based information systems. We describe a specific monitoring
setup that takes advantage of the replication model that is
common in many virtual worlds and multiplayer games to collect
the data. Finally, we present extensive performance results that
show the trade-offs between scalability, precision, and real-time
performance.

I. INTRODUCTION

Massively multiplayer games (MMOG), where thousands of
players are connected to a virtual world, are probably the most
well-known example of location-based information systems.
In such games, players perform game actions concurrently,
changing their own state and location in the game world as
well as affecting other game objects and players. Each of the
players typically only sees a small part of the world (its vision
range), namely the close vicinity of the location in the world
the player currently resides in. As the world continuously
changes, each of the players has to be informed about the ac-
tions of others players in its vision range. Thus, game engines
represent a combination of (i) a large distributed information
system, where players and game objects represent the state
and state changes are requested by many different clients (the
players) concurrently, (ii) a replication infrastructure where
each object typically has a master copy that accepts updates
and many secondary copies residing at the players’ clients, and
(iii) a large-scale data dissemination infrastructure in order to
efficiently send state changes to these secondary replicas.

But games, and virtual worlds in general, are not the
only applications that follow such an architecture. Large-
scale emergency and rescue endeavors or military actions
follow a similar pattern. More recent are urban planning and

traffic control environments, where, e.g., vehicles continuously
change their location and want updates about other vehicles
in their neighborhood. Other applications include cellular
network deployments where millions of users are located
across a large geographic area, are continuously moving, and
are communicating with each other.

In such environments, there are also global stakeholders that
require a holistic view of the current game/map/world state.
These observers typically want to monitor the overall state
continuously. Often, the observer wants to have the option to
have a full view of the entire world, in which case, information
of individual objects must be highly summarized, not only to
be visibly understandable but also as the single node showing
the data will not be able to hold/receive/process detailed
information of all data objects in the system. Additionally,
observers want to be able to quickly zoom into different
regions with varying zoom factors up to seeing all details in
a small area. Both global and local views are, e.g., useful
for game developers after they add new features to the game
in order to monitor their effect at the global or local stage.
As well, system administrators might want to detect any
imbalance situations in real-time, e.g., when many players
flock at the same time to a central location of the world as this
could overload servers quickly. In this case, the system must be
able to see that crowding at the global view, as well as provide
more detailed views when zooming into the crowded area.
Similarly, for traffic control systems, traffic jams or accidents
that hold the traffic need to be detected and analyzed quickly.

Monitoring is important not only for location-based infor-
mation systems, but for any application domain where state
can change quickly such as sensor networks or large-scale
server systems such as web-server farms. Various monitoring
and logging architectures have been proposed in these con-
texts, and the overall architecture of these systems often fol-
lows a similar pattern: (i) in order to handle the large amount
of data, the information flow is organized in a hierarchy,
where data is collected locally and then streamed upwards
a monitoring tree until it reaches a final processing and
observer node. (ii) On the way, data is filtered and aggregated.
Filtering means that some of the collected data is discarded and
only data of interest is retained and forwarded. Aggregation
means that many individual data records are summarized and
forwarded in a more compact, aggregated format.

Nevertheless, as applications are very different from domain
to domain, it is not trivial to transform such a general moni-
toring pattern into a concrete system for a specific domain.
We have identified the following specific requirements for
location-based information systems, in particular MMOGs
and virtual worlds. 1) Despite having thousands of players
(clients), and the world state being distributed among many
servers (and clients), the particular state of interest for moni-
toring must be gathered in near real-time without affecting the
performance of the underlying application. 2) The monitoring
infrastructure itself must be distributed in order to scale with
the underlying application. 3) As the amount of information
and the amount of changes per time unit are extremely large,
application-specific filtering and aggregation are necessary;
this holds in particular for location changes, which are ex-
tremely frequent and usually of high interest. 4) The focus of
interest for monitoring can change quickly, requiring efficient
zoom-in/zoom-out techniques as well as move techniques
within the collection, filtering and aggregation framework. In
this paper, we present a monitoring framework that fulfills
these requirements through various means:

Collecting: Our framework consists of collector nodes that
observe the state changes, filter and aggregate them, and
forward them to a monitoring node that merges and post-
processes the data. The architecture is scalable as different col-
lector nodes are dynamically assigned to different regions of
the virtual world. In particular, if the underlying virtual world
implementation supports load-balancing, then our architecture
exploits these mechanims for its own load-balancing.

Observing and Filtering: We propose a non-intrusive
integration of the monitoring framework by taking advantage
of the replication model most multiplayer game engines and
virtual worlds implement. By exploiting this replication model,
collector nodes can observe updates on objects for which
they are responsible without putting hooks into the underlying
virtual world implementation. With location changes being one
of the most frequent and important state changes in virtual
words, we present filtering and aggregation mechanisms that
are targeted to handle these location changes in an efficient
and holistic way. In particular, objects that are neighbors in
the virtual world can be aggregated to groups to provide infor-
mation at coarser levels. The system ensures that such group
aggregation is consistent even if the information is distributed
across several collector nodes. We integrated our framework
into the massively multiplayer game prototype Mammoth [1]
and experimentally analysed the trade-offs between scalability,
precision, and real-time performance.

II. BACKGROUND

In MMOGs, players collaborate or compete in a virtual
world. Each player sees a graphical representation of the world
and controls an avatar which can perform actions, e.g., move,
pick up objects, or talk to other avatars. Each player maintains
a copy of the (relevant) game state on his node. When one
player performs an action that affects the world, the game state
of all other players affected by that action must be updated.

A MMOG has to be scalable (handling any number of
simultaneously connected players), reliable (tolerating node or
communication failures), and fair (treating all players equally
despite distribution). It must also provide a consistent view of
the world to all players, despite network delays.

A. Game Components

Interest Management (IM) determines for each player the
objects she needs to know about, e.g., all game objects and
players that are in her vision range. Calculating interest is done
within short time intervals, or whenever a player or object
changes state, e.g., changes position.

Replication Model: Replication is necessary for state
management and update dissemination. Most systems use a
primary copy replication model. Each object and player in
the system has one primary copy (also referred to as master
copy) and many secondary copies (also referred to as replicas).
All updates are performed at the master copy that contains
the latest and correct state of the object. The master then
broadcasts the state changes to all replicas. Conceptually, the
replicas subscribe to the changes that occur at the master copy.

Whenever IM determines that a player or object has entered
the vision range of another player P, P needs to receive a
copy of that player or object. Once the copy is received, the
primary/secondary replication model ensures that P receives all
subsequent updates to this player/object. Once the player or
object leaves P’s vision range, the copy can be discarded. IM
is important not only for game semantics, but also to reduce
the total number of update messages in the system as every
player only needs updates for a small subset of game objects.

B. Distributed Architectures

In single server systems, the server maintains the master
copies of all objects and performs IM. All clients connect to
the server and receive replicas of the objects they are interested
in. Whenever a client makes a change to his avatar, the change
request is sent to the master on the server, executed there, and
the changes are then propagated to all replicas. Whenever IM
on the server determines that an object/player has entered the
vision range of a client’s avatar, the server must send a replica
to the client. However, a single server system can only handle
a limited number of players; thus, existing MMOGs typically
run on a multi-server, P2P, or hybrid distribution architecture.

In multi-server architectures, the game is typically divided
into regions, and each server performs IM and update dis-
semination for one region. The first approaches proposed
static regions [2], [3], [4]. For better load-balancing, newer
approaches propose dynamic regions where region sizes can be
adjusted, e.g., by splitting and joining regions, or by resizing
them [5]. To be more flexible, some approaches split the world
into many small fixed-sized regions, referred to as tiles, and
each server is responsible for many tiles [6]. Load-balancing
then involves moving some of the tiles from an overloaded
server to a less loaded server. A challenge is that the vision
range of players can cover regions residing on different servers
when the player resides close to the border of two regions.

Fig. 1: Proposed Monitoring Architecture

In peer-to-peer architectures, the clients are responsible for
maintaining the game state and perform IM [7][8][9]. Some
approaches follow a super-peer approach where some of the
clients take over server functionality, i.e., they are assigned
regions for which they perform update dissemination and IM.

In hybrid approaches, servers perform some of the tasks
while clients perform others [10][11]. For example, IM is done
by servers, while object management is performed by clients.

Our implementation is based on the MMOG middleware
Journey [12]. IM in Journey is based on triangular tiles.
Each player sees game objects in the tile she resides plus a
configurable neighborhood of tiles. Servers take care of IM for
a cell that consists of a set of tiles, and determine the vision
set for each player in that cell. For load-balancing, tiles can
be transferred between cells., e.g., if players flock to a small
subset of tiles, the cell server responsible for these tiles can
transfer some of the tiles to the cell of another server. Journey
uses the replication model described above. Cell servers have
copies of all game objects in their cell plus game objects that
are in tiles that are neighbors of their cell, so that they can
determine all objects their players might be interested in. The
master copies can either also reside on the servers (multi-
server) or can reside on some of the clients (hybrid).

III. MONITORING ARCHITECTURE

Monitoring the state of a virtual world is challenging
for several reasons: 1) the distributed information must be
gathered in real-time without affecting the game itself; 2)
it is impossible for a single node to connect to all player
nodes and collect all necessary information; 3) the monitoring
architecture must be integrated with the underlying infrastruc-
ture in a seemless way; 4) filtering and aggregation must be
done in a location aware manner and according to what the
monitoring person wants to focus on, and 5) the point of
interest of the monitoring person changes frequently. In this
section, we discuss our monitoring architecture and how it
integrates with the game infrastructure addressing challenges
1-3. Filtering and aggregation are only described at a high
level. Section IV provides details on how to perform dynamic
and adaptive location-focused filtering and aggregation.

A. Overall Collector/Monitor Architecture

Our proposed monitoring and filtering architecture for vir-
tual worlds is shown in Fig. 1.

Filtering and part of the aggregation is done on the collector
nodes. Each collector node observes a different region of
the virtual world. The number of collector nodes depends on
several factors: each collector has limited network connections
and bandwidth, which limits the amount of game state up-
dates a collector node can receive; additionally, each collector
has limited memory and processing power, which limits the
amount of filtering the node can perform. Unfortunately, the
many technical aspects that come into play when it comes
to network and processing power limitations make it hard
to analytically determine the ideal size of the region of the
virtual world that should be assigned to a collector. As a
result, an adequate size usually needs to be determined by
experimentation, and is ideally dynamically configurable.

At run time, the monitoring node and the collector nodes
are in constant communication. While the collector nodes con-
tinuously forward the filtered data of interest to the monitoring
node, the monitoring node communicates changes in point of
interest to the collectors, so they can adjust the filtering ac-
cordingly. The point of interest has 3 attributes: 1) what part of
the virtual world the monitoring node currently focuses on, 2)
the kinds of data the monitoring node currently wants to know
about, and optionally 3) what level of detail of information is
requested in terms of accuracy and/or timeliness.

B. Architecture Scalability Discussion

CPU use, memory use, network bandwidth and number of
network connections are the limiting factors at the collectors
and at the monitoring node. Our proposed architecture can
deal with these constraints as follows:

Adding additional collectors: Adding collectors to the
system reduces the size of the virtual world that a collector is
in charge of, which effectively reduces the number of game
objects that the collector needs to handle. This can address
CPU overload, memory use, incoming bandwidth and network
connection limitations at the collector, but increases incoming
bandwidth and number of connections on the monitoring node
due to the additional collectors.

Partitioning collectors according to kind: Instead of only
relying on space partitioning to determine what game objects
a collector is in charge of, the kind of game object can
alternatively or additionally be used. E.g., for a given region of
the virtual world, a collector could be in charge of monitoring
the position of the elves, while another keeps track of the
position of the orcs. This can address CPU overload, memory
use, incoming bandwidth and network connection limitations
at the collector, but increases number of connections on the
monitoring node to handle the additional collectors.

Adjusting the filtering: CPU use and outgoing bandwidth
on the collector, as well as incoming bandwidth on the
monitoring node can be decreased by adapting the filtering
granularity and frequency. Coarsening the granularity of the
filtering, i.e., aggregating game data more aggressively, de-
creases the precision of the information that is forwarded to the
monitoring node. Lowering the filtering frequency decreases
the timeliness of the data available at the monitoring node. It

depends on the game, precision and real-time requirements of
the observer if adjusting the filtering is an option.

Adding intermediate collectors: Fig. 1 shows one layer
of collectors. If the virtual world is so big that the number
of collectors needed to monitor its state exceeds the number
of connections that a monitoring node can support, then our
architecture needs to run in a multi-layer configuration: an
additional layer of collectors is introduced – the “supercollec-
tors”. The idea is that while collectors observe game object
updates, the supercollectors observe collector updates. The
supercollectors then filter that information further and forward
it to the monitoring node. This technique can address number
of connection limitations both on the collector and monitoring
nodes, but decreases the timeliness of the data available to
the monitoring node because all game state updates now
additionally flow through the supercollectors.

C. Integrating Monitoring into the Underlying Infrastructure

This subsection describes how we integrated our monitoring
approach into Journey. We believe that integration with other
game engines that follow a similar architecture (and many do),
will be conceptually very similar.

a) Game World Partitioning: To determine a suitable
partitioning of the virtual world for monitoring purposes it
was natural to reuse the regions that Journey already creates
in order to distribute IM to servers. The IM partitions are
created in such a way that the servers are powerful enough
to do IM for all the game objects in the partition: the servers
must have enough network capabilities to be able to register
for replicas of all game objects in the partition, and they
must have enough processing power to do IM for them. The
requirements for collectors are similar: they must have enough
network capabilities to be able to receive updates for all game
objects in the region they are monitoring, and they must have
enough processing power to filter the collected data. If there
is a node powerful enough to be a region server, then there
should also be a node that can act as a collector for that same
region. Consequently we integrated monitoring into Journey
by assigning per default one collector node for each IM region.

b) Data Collection: Since the data dissemination mech-
anism that sends updates from masters to replicas is highly
optimized in game engines, the obvious way for collector
nodes to be made aware of game state updates in their region
is to create replicas of all game objects of a region on the
collector. The nodes holding the master objects then send all
relevant game state object updates directly to the collector
node, just like for any other game client. With this, we
rely on the optimized data dissemination mechanism of the
underlying engine, and the monitoring framework does not
need to reimplement this important functionality.

c) Collector ↔ Monitor Communication: We also chose
replicated objects to communicate between the collectors and
the monitoring node. We encapsulate the filtered data that
needs to be communicated to the monitoring node in so-called
monitor objects (MOs). Each collector has a certain number
of MOs, and a monitoring node registers for replicas of all

MOs it is interested in. As a result, whenever a collector node
updates the state of one of its MOs, the replication module
automatically sends an update message to the replica on the
monitoring node. By controlling how often a collector node
updates its MOs, we can control how much data and how often
data is sent to the monitoring node.

The monitoring node needs to communicate the current
point of interest to all collector nodes. To this aim, the state of
the point of interest, i.e., the kind of information that is being
monitored and the currently observed area of the virtual world,
is stored in a view object. The monitoring node has the master
copy, which is updated whenever the human observer changes
the camera position or zoom factor, or selects different game
data to be monitored. All collector nodes have replicas of the
view object, and consequently are immediately informed of
any changes to the observer’s interest.

a) Maximization of Monitoring Precision: The design of
our monitoring architecture makes it possible to maximize the
precision of the gathered data given the maximum available
network bandwidth for a monitoring node. Since each collector
updates its MOs at a given frequency, the amount of data sent
from one collector node to the monitoring node is maximally
equal to #MOs/updateInterval×bytesPerUpdateMessage.
Given the number of collectors needed to monitor a virtual
world, the ratio #MOs/updateInterval is determined as:

#MO

updateInterval
=

availableBandwidth

#collectors× bytesPerMessage
(1)

A tradeoff decision must be made: the more MOs are used,
the longer the update interval must be; if less MOs are used,
updates can be sent in shorter intervals. The ideal configuration
depends on the current point of view, i.e., on the kind of
information gathered and the part of the world that is in focus.

b) Multiple Monitoring Nodes: By using replicated ob-
jects for communication, it is easy to support multiple monitor-
ing nodes. Each monitoring node has its own view object. Each
collector node has several view object replicas. Collectors then
create a separate set of MOs for each view, and performs for
each set the mapping from game state object to MO according
to the point of interest of the corresponding view.

While this works for a small number of monitoring nodes,
it is not feasible when the number of monitoring nodes
reaches the hundreds or thousands due to resource limitations
on the collectors. In this case, additional optimizations such
as the four scalability strategies discussed above – adding
additional collectors, partitioning collectors according to kind,
adjusting filtering, and adding intermediate collectors – can be
applied. An additional strategy that can be used is to configure
the collectors to only keep replicas of the view objects of
monitoring nodes that are relevant to them. In Journey this can
be done using the provided IM service. A collector announce
that it is interested in view objects only if their view region
intersects with the region that the collector is monitoring. IM
then ensures that the collector holds a replica of a view object
only as long as it fulfills that criteria. This optimization results
in receiving less view updates, decreases CPU usage on the

collector and reduces the incoming bandwidth and number of
connections from monitoring nodes.

c) Load Balancing: Journey provides support for load
balancing by dynamically adjusting the size of the region
assigned to a server [13]. The virtual world is partitioned into
many small tiles, and a server region is defined by a set of
connected tiles. The load of a server depends directly on how
many game objects are in its region: the server has replicas of
all objects and therefore receives all state updates, and must
perform IM for all players. When a server experiences high
load, e.g., because a significant number of players decide to
gather in the region handled by the server, Journey transfers
some of the border tiles of the region of the overloaded server
to an adjacent server.

The load on the collector node is also directly dependent on
how many game objects are in a monitoring region, since, just
like servers, the collector needs to have replicas of all game
objects in the region. Thanks to the fact that we chose to align
server regions and collector regions, the load balancing done
by Journey is also taking care of preventing collector overload.

IV. FILTERING AND AGGREGATION

There are two filtering techniques that can be applied
at the collector. One way to reduce information is to not
forward every change in state, but to only pass along the
game state changes once they are significant enough (which
needs to be determined based on game semantics) or once a
minimal time period has elapsed since the previous update.
This unfortunately introduces an artificial lag between the
actual game state and the one forwarded to the monitor. The
other way to reduce information is to aggregate changes by
calculating statistical data about the observed state changes,
and to only forward that summary data to the monitor. Which
aggregation algorithm works well depends on game semantics.

This section focuses on how our architecture can be config-
ured to monitor a very common kind of game data: positions of
players. Keeping track of player distribution in a virtual world
is essential, e.g, to foresee performance problems when players
flock to a region of the virtual world, to observe what paths
the majority of players are taking to complete the game goals,
or to monitor the behaviour of computer controlled players.

A. Player Groups

To reduce the amount of player position updates that need
to be communicated, our position collector nodes use both fil-
tering techniques described above: 1) the information quantity
is reduced by sending updates of the group positions in fixed
time intervals, and 2) the information quantity is reduced by
mapping the players in the virtual world to a fixed number
of groups based on player proximity. Only the position of the
group (i.e., the average of the positions of all the players in the
group), the radius and the size of the group are communicated.
This effectively limits the amount of bandwidth used between
a collector and the monitoring node for forwarding position
updates: the number of update messages sent is maximally
equal to #groups× updateFrequency.

To monitor player positions, we designed a Group Monitor
Object (GMO) that represents a group of players, i.e., it stores
the number of players that are part of the group, the radius of
the group, and the group centre, i.e., the average position of
the players. At every update cycle, the collector node updates
the state of the GMOs based on the received position updates
of players in the monitored region.

One decision that needs to be made is how to assign
players to groups. The assignment could be done on every
update cycle, thus minimizing the sum of all position errors.
Unfortunately, this strategy results in situations where, due to
small player movements, on each update cycle, a given player
is likely to be assigned to a different group. This behaviour
might be adequate if the monitoring node wants to display
high-level player density information, but fails if the intent is
to be able to monitor player group behaviour. The strategy
that we decided to adopt assigns players to the optimal GMO
based on their position when they enter the area of interest.
Once assigned, the player remains with the same GMO, unless
she moves considerably away from the group centre.

To do that, the following algorithm is used. First, based on
the current view object, it is determined what part of the world
is currently being observed. Then, the current set of players
that are in that “area of interest” is determined. This set is
compared with the set of players that are already assigned to
GMOs. Players that have newly entered the area of interest
are flagged as such, players that have left the area of interest
are removed from the mapping, and GMOs that are as a result
left unused are marked as “free”. Next, the used GMOs are
compared in pairs to check whether they are close to each
other. If yes, then the two groups are combined into one,
freeing one of the GMOs. Then, for each player that is already
mapped to a MO, the algorithm determines if the player has
moved too far from the group centre. If yes, the player is
removed from the group and flagged to be reassigned. Finally,
for each player that needs to be (re)assigned, we check if the
closest GMO is within a given maximum distance. If this is the
case, then the player is added to this GMO. Otherwise, if there
are still free GMOs, the player is assigned to a new GMO,
thus starting a new group. In case there are no more GMOs,
the player is added to the closest GMO as a last resort, even
though its centre might be farther than the maximum distance.

B. Additional Filtering at the Monitoring Node

One might think that it is always best for the monitor to
display all information received. In certain situations, though,
this leads to an uneven level of detail of displayed information.
This can be bothersome for aesthetic reasons, but can also
interfere with the interpretation of the data.

For instance, when a human observer pans through the
world at a fixed zoom level, she might at a given time observe
a region that is handled by a single collector, whereas at other
times she might be observing a region that is covered by
multiple collectors. Since each collector uses a fixed amount
of MOs, the two situations differ significantly in the amount
of information received at the monitoring node. For example,

when monitoring player positions and x GMOs are used per
collector, the monitor receives maximally x group positions
when observing a single-collector region, whereas it receives
maximally nx group positions when observing a region that is
handled by n collectors. This results in an inconsistent level of
detail when panning. When moving from a view that is covered
by a single collector to a view covered by two collectors the
number of groups shown on the screen could double. Also,
since grouping of players is done at the collectors, all players
within a group belong to the region handled by the collector.
As a result, if, e.g., a group of 10 players is standing close
together inside a region handled by a single collector, the
monitoring node would receive position information consisting
of one group of 10 players. If, however, the same 10 players
would be standing in the same configuration on the border of
two collector regions, the position information received at the
monitoring node would consist of two groups of 5 players. A
human observer might think in the later situation that there are
no groups of players that have more than 5 players, which is
not accurately reflecting the actual state of the virtual world.

To guarantee a consistent level of detail of information
regardless of the current point of view of the observer, the
monitor needs to perform additional filtering of the informa-
tion received. The nature of this filtering depends, of course,
on the kind of information that is observed, the specific
filtering algorithm that is used on the collectors, and what
the monitored information is eventually used for. In the case
of monitoring player positions, the monitoring node needs to
detect when the view of the observer covers more than one
collector region. If this is the case, the monitoring node needs
to analyze if groups of players that are located at the region
borders need to be merged. In total, in our system we decided
that the number of groups displayed in the view should not
exceed the number of GMOs on a single collector.

V. EXPERIMENTS

Mammoth [1] is a testing and research framework for
MMOGs. It allows researchers to conduct experiments in
a controlled but real-world like environment. The Journey
middleware described in Section 2 is part of Mammoth, but
Mammoth offers more, e.g., easy replacements of components,
an infrastructure to add non-player characters (NPCs) and to
define complex AI algorithms that determine their actions.
With the help of these NPCs, we can conduct real-world ex-
periments (as opposed to mathematical simulations) involving
hundreds of player machines, and gather the results using
mechanisms built into Mammoth.

We have implemented our monitoring architecture in Mam-
moth on top of Journey to assess our approach by running a set
of real-world experiments. These experiments were conducted
at the School of Computer Science labs, McGill University,
using over 100 separate machines to run the clients, collectors,
monitors and IM servers. All machines run Linux, have a 2.8
GHz dual-core processor or better, and at least 4GB of RAM.

In all experiments, the human players were replaced with
NPCs, which were either controlled by external commands

(for the load balancing experiment in Section V-E) or were
allowed to wander randomly from waypoint to waypoint
(for all other experiments). The rationale for using NPCs is
provided in [14], which shows that, given correct starting
conditions and positions, NPCs can approximate the actions
of human players and therefore provide realistic results in ex-
periments. Wanderer NPCs change destinations on average at
a frequency configured for each experiment. Each destination
change results in a state update message that is propagated
from the master to the replicas. The game engine then updates
the position of the master player object every 50 ms according
to the player speed until the destination is reached.

A. Scalability – Delay due to Redirection

The game information – player positions in our experiment
– goes through many stages before it reaches the monitoring
node. Any change in position on the node that hosts the master
player object is broadcast to all replicas, one of which is at
the collector node. There, the player position is mapped to a
GMO, and the state of the GMO is updated. That change is
then forwarded to the GMO replica located on the monitoring
node. This indirection introduces a delay, which can be divided
into the time taken due to additional communication and the
time spent filtering on the collector, i.e., assigning the players
to groups and updating the group position.

The first experiment was conducted to determine the scal-
ability of our approach, reporting on the delay introduced
by our architecture as the number of players increases. We
instrumented a monitoring node to not only register for the
GMOs of the collectors, but also to register for the player
replicas directly. In Journey, every state modification on a
player object is tagged with a serial number. We instrumented
the collectors to add these serial numbers to the GMO when
players are mapped to it. This makes it possible to measure
on the monitor the time delay between receiving the original
position update from the player replica, which is sent directly
from the player node to the monitor, and the corresponding
update to the tagged GMO replica sent from the collector
node. To measure only the delay due to communication, we
configured the collector node to propagate position changes
immediately. We ran the experiment on a Mammoth map
with 1000 initially inactive, uniformly distributed players. We
launched 4 Journey IM servers, each one responsible for
approximately 1/4th of the virtual world. We successively
started client machines, which take control of the players,
instructing them to move from waypoint to waypoint, changing
destination on average every 5 seconds. We repeated the
experiment with 3 configurations: one, two and 4 collectors.
Each collector was configured with 20 MOs, and we recorded
at least 100 measures before adding additional players.

Fig. 2 presents the time (in ms) that elapses on the monitor
between receiving a state update directly from the master
player node vs. receiving the state update through the GMO
from the collector. For each configuration, the average delay
time and the 95th percentile is shown. According to [15],
a delay of 300 ms is acceptable for MMOGs, and hence

0

100

200

300

400

500

100 200 300 400 500 600 700 800 900 1000

1 Collector: Average
1 Collector: 95th percentile
2 Collectors: Average
2 Collectors: 95th percentile
4 Collectors: Average
4 Collectors: 95th percentile

D
el

ay
 (m

s)

Number of Players

Fig. 2: Delay due to Filtering / Indirect Communication

the minimum acceptable delay for monitoring an MMOG
is probably of the same order of magnitude, maybe slightly
greater. Our results show that with 1 collector we can support
400 players without exceeding 300 ms for 95% of the clients.
With 2 collectors we can handle 900 players, and with 4
collectors and 1000 players we measured average delays of
58ms, with 95% of the delays being under 100 ms. We
were not able to reach higher player numbers, as the CPU
usage and network bandwidth on the instrumented monitoring
node saturated for higher player numbers, because it had to
additionally receive and process the updates of the players in
order to be able to take the measurements.

It has to be pointed out here that the collector and the
monitor were located on the same LAN. As a result, the
network delay caused by the additional message sending is
small. In a WAN setting, the delay would increase accordingly.

The CPU and network bandwidth used on the collector
increases linearly with the number of connected players. In the
single collector configuration at around 220 connected players,
the CPU load due to the execution of the mapping algorithm
that maps all players to 20 GMOs starts to influence the overall
delay, and in the long run prevents the system to scale above
500 players. In the 2 collector setting, each collector has to
deal with only half of the players on average. Also, there are
now 40 GMOs available to group players, and as a result
the delays introduced by the mapping algorithm only start
affecting the delay at around 440 connected players. With 4
collectors, the mapping algorithm load does not prevent the
system to scale to 1000 players.

B. Scalability – Limiting Update Messages

The second experiment verifies that our architecture limits
the network bandwidth required to send updates to the mon-
itor. We ran three separate experiments: one with a monitor
that is directly connected to all players; one where position
updates are filtered by a collector that has 5 GMOs, and
one where position updates are filtered by a collector with
8 GMOs. For the tests involving collectors, we configured the
mapping algorithm to run twice per second. Each experiment
was started in a virtual world that contains 100 non-moving
players. Then, every 10 seconds, a Wanderer NPC would

0"

5"

10"

15"

20"

25"

0" 5" 10" 15" 20" 25" 30" 35" 40" 45" 50" 55" 60" 65" 70" 75" 80" 85" 90" 95"100"

Av
er
ag
e'
#'
of
'M

es
sa
ge
s/
se
c'

Number'of'Ac3ve'Players'

Direct"Update"

8"MOs"

5"MOs"

Fig. 3: # Update Messages received on Monitoring Node

connect and take control of one of the immobile players. The
movement frequency was set to an average of one change in
direction every 5 seconds. Each change in direction results in
an update message sent from the node running the NPC to
the monitor (experiment 1) or the collector (experiment 2 and
3). As the players starts moving, we measured the number
of update messages that were received on the monitor. The
update count was taken every 5 seconds, and then averaged to
compensate for the randomness of the player movements.

The measurements for this experiment are shown in Fig.3,
which plots the number of moving players against average
updates per second. The line labeled “Direct Update” repre-
sents the results for experiment 1. As expected, the message
count on the monitor increases almost linearly as more players
are added. Furthermore, the number of update messages is
approximately 1/5th of the number of moving players, which
corresponds to the 5 second average delay between change of
direction that was set for the NPC.

For experiments 2 and 3, the received update messages
on the monitor are coming from the collector, and therefore
contain filtered data. The numbers show that in both experi-
ments initially the number of messages received by the monitor
increases twice as fast as for experiment 1. This is explained
as follows: when a moving player that was first mapped to
one GMO is reassigned to a different GMO, the states of both
GMOs change and hence two update messages are sent to the
monitor in the following time slice. Since the players were
distributed uniformly across the world, the maximum number
of GMOs contain moving players very early on during the
experiments. However, as more players start moving, GMOs
are being shared, which slows down the increase in the number
of update messages. Once a sufficiently large number of
players are connected (approx. 50 in our experiments), each
GMO changes state at each iteration of the mapping. However,
the maximum number of updates is limited by the number of
GMOs divided by the update delay between iterations. Since
for both experiments the update delay was fixed at 0.5 seconds,
the maximum number of update messages that is generated is
twice the number of GMOs, i.e. 10 messages/s for experiment
2 with 5 GMOs, and 16 messages/s for experiment 3 with 8
GMOs.

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

3.5	

5	
 MOs	
 -­‐	
 500ms	
 Update	
 10	
 MOs	
 -­‐	
 1s	
 Update	
 20	
 MOs	
 -­‐	
 2s	
 Update	

Av
er
ag
e	

Po

si
,o

n	

Er
ro
r	
 i
n	

W
or
ld
	
 U
ni
ts
	

3	
 -­‐	
 30	
 Players	
 3	
 -­‐	
 100	
 Players	

9	
 -­‐	
 30	
 Players	
 9	
 -­‐	
 100	
 Players	

15	
 -­‐	
 30	
 Players	
 15	
 -­‐	
 100	
 Players	

(a) Position Errors vs Zoom Level / Configura-
tions

0%	

5%	

10%	

15%	

20%	

25%	

30%	

35%	

40%	

45%	

50%	

5	
 MOs	
 -­‐	
 500ms	
 Update	
 10	
 MOs	
 -­‐	
 1s	
 Update	
 20	
 MOs	
 -­‐	
 2s	
 Update	

Er
ro
r	
 /
	
 V
is
ib
le
	
 A
re
a	

of
	
 th

e	

W
or
ld
	

3	
 -­‐	
 Close	
 Zoom	

9	
 -­‐	
 Medium	
 Zoom	

15	
 -­‐	
 Full	
 View	

(b) Relative Error / Visible Area of the World

3 Zoom Level 9 15
5%

10%

15%

20%

25%

30%

35%

Collector 1

Collector 2

Merged

Single Collector

Zoom

P
e
rc

e
n
ta

g
e
 E

rr
o
r

(c) Error in Player Position Before and After
Merging

Fig. 4: Accuracy – Error in Player Position

C. Accuracy – Error in Player Position

Our third experiment investigates the inaccuracy of player
positions reported on the monitor due to the mapping of
multiple players to a single GMO and due to the time delay.
The experiment also provides insight on how to determine the
optimal tradeoff between #GMOs and update frequency.

We ran several experiments, some on a map with 30 players,
some on a map with 100 players, using different areas of
interest at the monitoring node, i.e., areas with a diameter of 15
world units, 9 world units, and 3 world units. For our test map,
15 corresponds to a full view of the map (completely zoomed
out), 9 shows 35% of the map (medium zoom), and 3 displays
4% of the map (close zoom). We ran the experiments using
different configurations of the collectors, but making sure that
the maximum used network bandwidth was constant at 10
messages / second for every experiment. We therefore used:
5 GMOs with 0.5s update interval, 10 GMOs with 1s update
interval, and 20MOs with 2s update interval. We instructed
our NPCs to move on average every 3 seconds at a speed of
0.6 units / second.

We measured the average error in player positions, i.e., the
difference between the actual player position and the position
of the centre of the group to which the player was mapped
to. In the case where a player should be visible on screen but
was not mapped to a GMO yet, the error was set to be the
maximum viewable distance.

The results are shown in Figure 4a. The first fact to observe
is that the difference in the average error in all experiments
does not depend on the total number of players in the map.
The reason for this is that the size of the GMOs in terms of
the area of the map covered is roughly the same in both cases,
and only the number of players mapped to a GMO differs. But
since we take the average of all the errors in player positions,
the number of players in the GMO is not relevant.

We also observe that within each group of measurements
for a given configuration, the average error increases with
the diameter of the viewed area. The difference in accuracy
between the closest zoom level and the full map view is the
biggest for the 5 GMO configuration. This makes sense, since
at the closest zoom level there are often just very few players
visible, and hence 5 GMOs with fast update yields the best
results. In contrast, 20 GMOs with slow update is not ideal
at the closest zoom level, shown by the high average error
reported at zoom level 3 for the 20 GMO configuration. In this

case, most GMOs are unused, and the error stems mostly from
the slow update interval. However, having more GMOs pays
off at higher zoom levels. In our experiment, the 10 GMOs
with 1s update interval performs best at full world view.

Although our experiments show that the error increases as
the view is zoomed out, the actual perceived error for an
observer on the monitor is the error relative to the view size.
Fig. 4b plots the ratio error/visibleArea, i.e., the perceived ac-
curacy, for the 5 GMO, 10 GMO and 20 GMO configurations.
The results show that error ratio in general is lower for higher
zoom levels, since the movement of players with respect to
the visible area of the world is small. It also shows that for a
close zoom level, the shortness of the update interval is most
important for achieving high accuracy. For higher zoom levels
on the other hand the number of GMOs becomes important
too. However, 10 GMOs and 1s update interval outperforms
the 20 GMOs and 2s update interval configuration, which
suggests that at some point the error resulting from slow
updates cancels the benefits of having more GMOs.

D. Accuracy – Merging at the Monitoring Node

The purpose of this experiment is to demonstrate that the
observer experiences a varying degree of detail when multiple
collectors are used depending on the region that is observed,
but that a consistent level of detail can be ensured if additional
filtering is performed on the monitoring node as discussed in
Subsection IV-B.

For this experiment, Mammoth was setup to run with four
servers, and a total of 100 randomly moving NPC players that
are equally distributed within the world. In the first experiment,
the monitoring system used two collectors, each using 10 MOs
and each responsible for two IM regions. At the monitoring
node, the group information received from the 20 GMOs
was reduced by continuously merging the two closest groups
until there were only 10 groups left. The average percentage
error between the actual and the reported player position was
recorded at each of the collectors, and at the monitoring node
after merging. The percentage error was calculated as the error
in world units divided by the maximum visible distance from
the centre of the view. This error was calculated for the three
different zoom levels presented in the previous experiment.

The blue and red lines in Figure 4c represent the average
error at each of the collectors. We observe that given the
uniform distribution of players, the results for each collector

1 7 134 10 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

20 MOs (no merging)

20 Mos (merged to 10)

Time (s)

A
v
e
ra

g
e
 E

rr
o
r

t = 0s

t = 40s

t = 60s

Fig. 5: Effects of Load Balancing on Average Error

are very similar. The yellow line shows the percentage error
after the 20 groups have been reduced to 10 groups at the
monitoring node. At zoom level 3, we observe that there is
no difference before and after the merging. The reason for
this result is the fact that at such close zoom level very few
players are actually visible, and therefore not all the GMOs
at the collectors are used. Since the merging only takes into
account the GMOs that are actually used, and since the number
of such GMOs is actually already less then 10, no merging
takes place. As expected, the result of merging at higher zoom
levels increase the average error.

To prove that merging at the monitoring node guarantees
visual consistency, a second experiment was conducted with
identical setup but using only a single collector for the entire
world (and hence no merging at the monitoring node was
necessary). The results of this experiment are shown as a
grey dotted line in Figure 4c. We observe that the average
percentage error when using a single collector is nearly
identical to the results obtained after merging groups from
multiple collectors.

E. Scalability and Accuracy – Load Balancing

As the virtual world being monitored is divided among mul-
tiple collectors, and the players in that virtual world move from
one region to another, the load on the individual collectors can
change significantly. In cases where a large number of players
gather in a small area of the world – a phenomenon commonly
referred to as flocking – a collector could potentially get
overloaded. Fortunately, a load balancing mechanism already
exist in Mammoth that adjusts IM server regions as players
move within the world. This experiment shows that, since in
our design collector regions are linked to IM server regions,
the Journey load balancing also updates the collector regions to
ensure that the number of players handled by each collector is
balanced. This prevents the incoming bandwidth of collectors
from being overloaded. The experiment also illustrates why
additional filtering at the monitoring node is necessary to
guarantee uniform level of detail of displayed information.

The experiment involved running Mammoth with two IM
servers and two collectors with 10 GMOs each. As a result,
the world is partitioned into two regions, shown in green and
blue in Figure 5. 40 NPCs that are distributed uniformly in the
central region of the world are then instructed to move to the
left, which results in increasing the load on the green server
(and consequently the associated collector). The evolution of
the region topology (at 0 seconds, 40 seconds and 60 seconds)

is illustrated in Figure 5 on the right. The average position
error between the group position and the actual player position
was continuously measured on the monitoring node while the
Mammoth load balancing mechanism readjusted the regions
assigned to the servers (and hence to the collectors) to contain
again roughly the same number of players.

The results are presented on the left side of Figure 5. The
blue line depicts the average error of the group data received
from the collectors on the monitoring node compared to the
actual player positions. We can observe that as most of the
players move to the region covered by a single collector, the
average error increases sharply. The reason for this increase is
attributed to the fact that in the balanced case all 20 GMOs are
being used in the filtering process for the 40 players. However,
when players move to a single collector region, only 10 of the
GMOs can be used. We also observe that as load balancing
readjusts the cells to distribute the players evenly, the error
decreases slowly. The screen shots shown in Figure 5 were
taken at the beginning of the experiment, after 40s (while
the load balancing mechanism is readjusting the size of the
regions) and after 60s (when the regions stabilized again).

As explained in section IV-B, if a uniform level of detail of
monitored information is more important than accuracy, addi-
tional filtering needs to be done at the monitoring node. The
red line in Figure 5 depicts the average error when merging
on the monitoring node is enabled for visual consistency. The
numbers show that in this case the accuracy is much more
consistent while the players move across collector regions,
because the number of groups displayed to an observer is
at most 10 even if multiple collectors are active. The short
increase in error at 11s is due to the fact that the so far
immobile players all started to move at the same time.

VI. RELATED WORK

To the best of our knowledge, there has been no prior
work on monitoring approaches for virtual worlds. However,
monitoring for distributed systems in general has been studied
in detail, and our approach has been inspired by some of the
existing solutions.

[16] proposes a technique for gathering telemetric data, such
as performance statistics and resource usage, in distributed
systems using the Simple Network Management Protocol. The
paper introduced the concept of intermediate level managers
(ILM) that gather data from multiple nodes (similar to our
collector nodes), and report this data to the top level manager
(TLM) (which corresponds to our monitoring node). The TLM
is also responsible for informing the ILMs of the type of data
that needs to be collected.

Matthew et al. [17] propose a system called Ganglia. It
is a generic solution for collecting any type of data from a
distributed system, which arranges all nodes in the distributed
system in a tree structure. Leaf nodes produce the data, and
higher level nodes aggregate this data before sending it to
parent nodes. A similar hierarchical model is provided in [18],
where the system is dividided into control agents, responsible

for controlling and collecting data from the underlying sys-
tem, supervisory agents, responsible for informing the control
agents about the intended goal, and expert agents, which are
used to handle exceptional situations such as malfunctions.

The Chukwa monitoring system [19] was developed as a
mean of collecting and analyzing very large amounts of data
(in the scale of hundreds of Gigabytes per day) produced by
map-reduce calculations. Chukwa’s nodes are organized in a
tree structure. Adapters are deployed on the nodes which are
being monitored to extract relevant data. In case the interest
changes, the adapters need to be replaced. Agents run on the
monitored system and use the adapters to collect data from
the data source and send it to the collectors. Collectors receive
data from multiple agents and write it to a big sink file along
with the metadata. These files can later be read for analysis.
Twitter has developed a similar unified logging infrastructure
[20] that collects logs in a scalable and reliable manner using
hierarchically connected log servers.

At the other spectrum are monitoring systems such as [21]
that automatically trace events in the system, and cluster
and order them so that they can determine dependencies
(e.g., determining all execution related to a single external
client request). These solutions often focus on the complex
matching algorithms and scalability issues in log collection
and processing are not the major concerns.

VII. CONCLUSION

In this paper we presented and evaluated a monitoring
framework that fulfills the requirements for monitoring large-
scale, location-based information systems. We propose to
partition the space into regions and delegate the gathering of
state updates for each region to a collector node. The collector
node filters and aggregates the gathered game state updates
according to the current point of interest of the observer, and
forwards them to the monitoring node that merges and post-
processes the data it receives.

We illustrated our monitoring framework in the context
of MMOGs, and proposed a non-intrusive integration of the
monitoring framework into the game by taking advantage
of the replication model most multiplayer game engines and
virtual worlds implement. By exploiting this replication model,
collector nodes can observe all updates on the objects for
which they are responsible without the need to put hooks
into the underlying virtual world implementation. Replicated
objects are also used for the communication between collectors
and monitoring nodes by mapping the relevant game state
updates to a fixed set of monitor objects. By carefully choosing
the number of monitor objects on each collector and the
frequency at which their state is updated, it is possible to
achieve good accuracy and timeliness of data while bounding
the maximum network bandwidth required for monitoring. To
illustrate the filtering and data aggregation, we presented the
design of monitor objects that gather player position data.

We summarized the results of an extensive set of perfor-
mance measurements obtained by running several real-world
experiments on our implementation. The experiments showed

that 1) The delay introduced by using dedicated collector
nodes to filter the game state updates is acceptable for real-
time monitoring of MMOGs. 2) Our approach is capable
of bounding the network bandwidth used by each collector
node. 3) The proposed architecture scales well: the number
of players that the system can handle is proportional to
the number of collector nodes in the system. 4) The ideal
#MOs/updateInterval ratio depends on the kind of data
that is observed and the current point of interest. For instance,
when observing player positions, the ratio resulting in the
highest data accuracy depends on the zoom level used on
the monitoring node. 5) Load balancing for collectors can be
achieved by adjusting the size of the observed regions.

REFERENCES

[1] J. Kienzle, C. Verbrugge, B. Kemme, A. Denault, and M. Hawker,
“Mammoth: A Massively Multiplayer Game Research Framework,” in
ICFDG. New York, USA: ACM Press, April 2009, pp. 308 – 315.

[2] W. Cai, P. Xavier, S. Turner, and B. Lee, “A scalable architecture for
supporting interactive games on the internet,” in Parallel and distributed
simulation workshop. IEEE, 2002, pp. 60–67.

[3] T.-Y. Hsiao and S.-M. Yuan, “Practical middleware for massively
multiplayer online games,” IEEE Internet Computing, vol. 9, no. 5, pp.
47–54, 2005.

[4] M. Varvello, S. Ferrari, E. Biersack, and C. Diot, “Exploring second
life,” IEEE Transactions on Networking, vol. 19, no. 1, pp. 80–91, 2011.

[5] R. Balan, M. Ebling, P. Castro, and A. Misra, “Matrix: Adaptive
middleware for distributed multiplayer games,” in Middleware 2005.
Springer, 2005, pp. 390–400.

[6] B. Technologies, “Bigworld 2.0,” http://www.bigworldtech.com/, 2011.
[7] B. Knutsson, H. Lu, W. Xu, and B. Hopkins, “Peer-to-peer support for

massively multiplayer games,” in INFOCOM 2004, vol. 1, 2004.
[8] T. Iimura, H. Hazeyama, and Y. Kadobayashi, “Zoned federation of

game servers: a peer-to-peer approach to scalable multi-player online
games,” in Netgames. ACM, 2004, pp. 116–120.

[9] A. Bharambe, J. Pang, and S. Seshan, “Colyseus: A distributed archi-
tecture for online multiplayer games,” NSDI, 2006.

[10] D. Ahmed, S. Shirmohammadi, and J. de Oliveira, “A hybrid P2P
communications architecture for zonal MMOGs,” Multimedia Tools and
Applications, vol. 45, no. 1, pp. 313–345, 2009.

[11] L. Chan, J. Yong, J. Bai, B. Leong, and R. Tan, “Hydra: a massively-
multiplayer peer-to-peer architecture for the game developer,” in
Netgames. ACM, 2007, pp. 37–42.

[12] A. Denault and J. Kienzle, “Journey: A massively multiplayer online
game middleware,” IEEE Software, vol. 28, no. 5, pp. 38–44, 2011.

[13] A. Denault, C. Cañas, J. Kienzle, and B. Kemme, “Triangle-based
Obstacle-aware Load Balancing for Massively Multiplayer Games,” in
Netgames. ACM, 2011, pp. 1 – 6.

[14] J. Boulanger, J. Kienzle, and C. Verbrugge, “Comparing interest manage-
ment algorithms for massively multiplayer games,” in Netgames. ACM,
2006, pp. 1–12.

[15] L. Pantel and L. C. Wolf, “On the impact of delay on real-time
multiplayer games,” in NOSSDAV. ACM, 2002, pp. 23–29.

[16] R. Subramanyan, J. Miguel-Alonso, and J. A. B. Fortes, “A scalable
snmp-based distibuted monitoring system for heterogeneous network
computing,” in Supercomputing ’00. IEEE, 2000.

[17] M. L. Massie, B. N. Chun, and D. E. Culler, “The Ganglia distributed
monitoring system: Design, implementation and experience,” 2004.

[18] V. V. Tan, D.-S. Yoo, J.-C. Shin, and M.-J. Yi, “A multiagent system
for hierarchical control and monitoring,” Journal of Universal Computer
Science, vol. 15, no. 13, pp. 2485–2505, 2009.

[19] A. Rabkin and R. Katz, “Chukwa: a system for reliable large-scale log
collection,” in LISA’10. USENIX Association, 2010, pp. 1–15.

[20] G. Lee, J. Lin, C. Liu, A. Lorek, and D. Ryaboy, “The unified logging
infrastructure for data analytics at twitter,” Proc. VLDB Endow., vol. 5,
no. 12, pp. 1771–1780, Aug. 2012.

[21] B. C. Tak, C. Tang, C. Zhang, S. Govindan, B. Urgaonkar, and R. N.
Chang, “vpath: Precise discovery of request processing paths from
black-box observations of thread and network activities,” in USENIX’09.
USENIX Association, 2009, pp. 19–19.

