
Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

CacheDOCS: A Dynamic Key-Value Object Caching
Service

ICDCS-PED 2017

Julien Gascon-Samson, Michael Coppinger, Fan Jin, Jörg
Kienzle, Bettina Kemme

Post-Doctoral Fellow @ Univerity of British Columbia
Current Advisor: Dr Karthik Pattabiraman
Department of Electrical and Computer Engineering
Vancouver, Canada

Work completed under the advisement of:
Dr Jörg Kienzle and Dr Bettina Kemme
School of Computer Science, McGill University
Montreal, Canada

Monday June 5th, 2017

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Key-Value Store 2

Key-Value Store

Stores pairs of {k, v}:

k1 v1
k2 v2
k3 v3
k4 v4
k5 v5

Operations:
get(k): obtain value v for
key k

put(k , v): put pair {k , v}

Caching can be deployed as part of a system
Or offered as a service in the cloud

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Key-Value Store 2

Key-Value Store

Stores pairs of {k, v}:

k1 v1
k2 v2
k3 v3
k4 v4
k5 v5

Operations:
get(k): obtain value v for
key k

put(k , v): put pair {k , v}

Caching can be deployed as part of a system
Or offered as a service in the cloud

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Key-Value Store 2

Key-Value Store

Stores pairs of {k, v}:

k1 v1
k2 v2
k3 v3
k4 v4
k5 v5

Operations:
get(k): obtain value v for
key k

put(k , v): put pair {k , v}

Caching can be deployed as part of a system
Or offered as a service in the cloud

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Key-Value Store 2

Key-Value Store

Stores pairs of {k, v}:

k1 v1
k2 v2
k3 v3
k4 v4
k5 v5

Operations:
get(k): obtain value v for
key k

put(k , v): put pair {k , v}

Example - Database Context

S t r i n g s q l =
"SELECT␣∗␣FROM␣DATA" ;

i f (cache . c o n t a i n s (s q l)) {
r e t u r n cache . ge t (s q l) ;

}
Object r e s u l t = db . query (s q l) ;
cache . put (sq l , r e s u l t) ;
r e t u r n r e s u l t ;

Caching can be deployed as part of a system
Or offered as a service in the cloud

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Key-Value Store 2

Key-Value Store

Stores pairs of {k, v}:

k1 v1
k2 v2
k3 v3
k4 v4
k5 v5

Operations:
get(k): obtain value v for
key k

put(k , v): put pair {k , v}

Example - Database Context

S t r i n g s q l =
"SELECT␣∗␣FROM␣DATA" ;

i f (cache . c o n t a i n s (s q l)) {
r e t u r n cache . ge t (s q l) ;

}
Object r e s u l t = db . query (s q l) ;
cache . put (sq l , r e s u l t) ;
r e t u r n r e s u l t ;

Caching can be deployed as part of a system
Or offered as a service in the cloud

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Limitations of key-value stores 3

Storage of “static” pairs of key-value

Pull-based interface

Assuming player P1, we must serialize the object to store it
put(”Julien”, serialize(P1))

Upon P1 changing (i.e., moving), then we must reserialize P1:
put(”Julien”, serialize(P1))

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Limitations of key-value stores 3

Storage of “static” pairs of key-value
Pull-based interface

Assuming player P1, we must serialize the object to store it
put(”Julien”, serialize(P1))

Upon P1 changing (i.e., moving), then we must reserialize P1:
put(”Julien”, serialize(P1))

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Limitations of key-value stores 3

Storage of “static” pairs of key-value
Pull-based interface

Storing objects in a key-value store:

Player.java

p u b l i c c l a s s P l a y e r {
S t r i n g name ;
i n t x ;
i n t y ;

}

Assuming player P1, we must serialize the object to store it
put(”Julien”, serialize(P1))

Upon P1 changing (i.e., moving), then we must reserialize P1:
put(”Julien”, serialize(P1))

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Limitations of key-value stores 3

Storage of “static” pairs of key-value
Pull-based interface

Storing objects in a key-value store:

Player.java

p u b l i c c l a s s P l a y e r {
S t r i n g name ;
i n t x ;
i n t y ;

}

Assuming player P1, we must serialize the object to store it
put(”Julien”, serialize(P1))

Upon P1 changing (i.e., moving), then we must reserialize P1:
put(”Julien”, serialize(P1))

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Limitations of key-value stores 3

Storage of “static” pairs of key-value
Pull-based interface

Storing objects in a key-value store:

Player.java

p u b l i c c l a s s P l a y e r {
S t r i n g name ;
i n t x ;
i n t y ;

}

Assuming player P1, we must serialize the object to store it
put(”Julien”, serialize(P1))

Upon P1 changing (i.e., moving), then we must reserialize P1:
put(”Julien”, serialize(P1))

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Retrieving an Object 4

Player.java

p u b l i c c l a s s P l a y e r {
S t r i n g name ;
i n t x ;
i n t y ;

}

Assuming a game with many players, which are cached:

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Retrieving an Object 4

Player.java

p u b l i c c l a s s P l a y e r {
S t r i n g name ;
i n t x ;
i n t y ;

}

Assuming a game with many players, which are cached:

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Retrieving an Object 4

Player.java

p u b l i c c l a s s P l a y e r {
S t r i n g name ;
i n t x ;
i n t y ;

}

Assuming a game with many players, which are cached:

Retrieving a cached player

P l a y e r p ;
wh i l e (t r u e) {

p = u n s e r i a l i z e (cache . ge t (" J u l i e n ")) ;
s l e e p (1 0 0) ;

}

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Complex Object 5

Designing a Collaborative Drawing Application

p u b l i c c l a s s Drawing {
Co lo r [] [] p i x e l s ;

v o i d drawLine (i n t x1 , i n t y1 , i n t x2 , i n t y2 , Co lo r c o l o r) ;
v o i d drawRectang le (i n t x1 , i n t y1 ,

i n t x2 , i n t y2 , Co l o r c o l o r) ;
v o i d f i l l (i n t c o l o r) ;
v o i d g e t P i x e l (i n t x , i n t y) { r e t u r n p i x e l s (x , y) ; } ;

} // . . .

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

CacheDOCS 6

CacheDOCS - Object Caching as a Service:

Large-Scale Games

Many players & in-game objects
Offloading the centralized game
infrastructure
Increasing scalability

Collaborative Document Editing

Hosting many live documents
(several millions)
Many users can collaborate on
the same document
Increasing scalability

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

CacheDOCS 6

CacheDOCS - Object Caching as a Service:

Large-Scale Games

Many players & in-game objects
Offloading the centralized game
infrastructure
Increasing scalability

Collaborative Document Editing

Hosting many live documents
(several millions)
Many users can collaborate on
the same document
Increasing scalability

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

High-Level Architecture 7

1 Motivation

2 High-Level Architecture

3 Update Propagation

4 Implementation & Evaluation

5 Conclusion

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Object Caching as a Service 8

CacheDOCS API
get(k): obtain value v for key k

put(k, v): put pair {k , v}

getAddSubscribe(k):
obtain value v for key k ,
subscribe to be notified of changes to v : pub/sub

Publish/Subscribe (Topic-Based)

Use pub/sub to disseminate updates of cached objects to interested
clients:

getAddSubscribe(k) ⇒ subscribe(k)

v is modified ⇒ publish(k, ”v”)

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Object Caching as a Service 8

CacheDOCS API
get(k): obtain value v for key k

put(k, v): put pair {k , v}
getAddSubscribe(k):

obtain value v for key k ,
subscribe to be notified of changes to v : pub/sub

Publish/Subscribe (Topic-Based)

Use pub/sub to disseminate updates of cached objects to interested
clients:

getAddSubscribe(k) ⇒ subscribe(k)

v is modified ⇒ publish(k, ”v”)

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Object Caching as a Service 8

CacheDOCS API
get(k): obtain value v for key k

put(k, v): put pair {k , v}
getAddSubscribe(k):

obtain value v for key k ,
subscribe to be notified of changes to v : pub/sub

Publish/Subscribe (Topic-Based)

Use pub/sub to disseminate updates of cached objects to interested
clients:

getAddSubscribe(k) ⇒ subscribe(k)

v is modified ⇒ publish(k, ”v”)

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Architecture 9

RMI
Interface

RMI
Stub

Consistency
Manager

Master
Object

Object
Manager

PubSub
Client

Object Cache

PubSub
Middleware

Publish Subscribe
Server

Local
Object

Consistency
Manager

PubSub
Client

Object
Manager

Client Application

Update Update

Remote Invocation

Client Application

get(k), put(k, v),
getAddSubscribe(k)

Maintains local copies vl of
cached objects
Synchronizes changes with
master objects (vr)

Object Cache

Caches Java Objects ({k, vr}
pairs)
Holds the masters (vr)
Exposed through RMI
Pub/Sub Interface

Push changes to objects

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Architecture 9

RMI
Interface

RMI
Stub

Consistency
Manager

Master
Object

Object
Manager

PubSub
Client

Object Cache

PubSub
Middleware

Publish Subscribe
Server

Local
Object

Consistency
Manager

PubSub
Client

Object
Manager

Client Application

Update Update

Remote Invocation

Client Application

get(k), put(k, v),
getAddSubscribe(k)

Maintains local copies vl of
cached objects
Synchronizes changes with
master objects (vr)

Object Cache

Caches Java Objects ({k, vr}
pairs)
Holds the masters (vr)
Exposed through RMI
Pub/Sub Interface

Push changes to objects

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Architecture 9

RMI
Interface

RMI
Stub

Consistency
Manager

Master
Object

Object
Manager

PubSub
Client

Object Cache

PubSub
Middleware

Publish Subscribe
Server

Local
Object

Consistency
Manager

PubSub
Client

Object
Manager

Client Application

Update Update

Remote Invocation

Client Application

get(k), put(k, v),
getAddSubscribe(k)

Maintains local copies vl of
cached objects
Synchronizes changes with
master objects (vr)

Object Cache

Caches Java Objects ({k, vr}
pairs)
Holds the masters (vr)
Exposed through RMI
Pub/Sub Interface

Push changes to objects

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Update Propagation 10

1 Motivation

2 High-Level Architecture

3 Update Propagation

4 Implementation & Evaluation

5 Conclusion

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Propagating Updates 11

Method invocation sent to master.
Upon the state of a cached object {k , vr} changing:

Updates are propagated to all subscribers S ∈ S
Four different propagation strategies

Update Propagation

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Propagating Updates 11

Method invocation sent to master.
Upon the state of a cached object {k , vr} changing:

Updates are propagated to all subscribers S ∈ S

Four different propagation strategies

Update Propagation

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Propagating Updates 11

Method invocation sent to master.
Upon the state of a cached object {k , vr} changing:

Updates are propagated to all subscribers S ∈ S
Four different propagation strategies

Update Propagation

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

1- Serialized Update Strategy 12

Principle - Serialized Update Strategy

1 vr1 serialized and sent to all S ∈ S
2 All S deserialize vr1, and replace vl0 by vr1 in the local cache

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

2- Operation Update Strategy 13

Principle - Operation Update Strategy

1 Operation serialized and sent to all S ∈ S
2 All S unserialize and execute the operation on vl0 to obtain vl1

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

3- Binary Diff Update Strategy 14

Principle - Binary Diff Update Strategy

1 Cache serializes vr0 and vr1 computes the binary diff vr0 → vr1
2 Binary diff sent to all S ∈ S
3 All S patch the serialized vl0 with the diff, and deserialize to

obtain vr1

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

4- Attribute Patch Update Strategy 15

Principle - Attribute Patch Update Strategy

1 Cache sends dict of modified attributes (vr0 → vr1) to S ∈ S
2 All S patch vl0 with the new attributes to obtain vl1

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Handling Concurrency 16

S1: Local object at state vl0
S2: Local object at state vl0
Cache: Object at state vr0

Incorrect Behavior
S1 performs an operation: vr0 → vr1
S2 performs an operation: vr1 → vr2

Incorrect as S2 assumes state vr0

Correct Behavior
S1 performs an operation, sends “version” 0: vr0 → vr1
S2 performs an operation, sends “version” 0:

Rejected as cached version is now 1 (vr1)

S2 receives update and patches to version 1 (vl1)
S2 can retry the operation

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Handling Concurrency 16

S1: Local object at state vl0
S2: Local object at state vl0
Cache: Object at state vr0

Incorrect Behavior
S1 performs an operation: vr0 → vr1

S2 performs an operation: vr1 → vr2
Incorrect as S2 assumes state vr0

Correct Behavior
S1 performs an operation, sends “version” 0: vr0 → vr1
S2 performs an operation, sends “version” 0:

Rejected as cached version is now 1 (vr1)

S2 receives update and patches to version 1 (vl1)
S2 can retry the operation

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Handling Concurrency 16

S1: Local object at state vl0
S2: Local object at state vl0
Cache: Object at state vr0

Incorrect Behavior
S1 performs an operation: vr0 → vr1
S2 performs an operation: vr1 → vr2

Incorrect as S2 assumes state vr0

Correct Behavior
S1 performs an operation, sends “version” 0: vr0 → vr1
S2 performs an operation, sends “version” 0:

Rejected as cached version is now 1 (vr1)

S2 receives update and patches to version 1 (vl1)
S2 can retry the operation

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Handling Concurrency 16

S1: Local object at state vl0
S2: Local object at state vl0
Cache: Object at state vr0

Incorrect Behavior
S1 performs an operation: vr0 → vr1
S2 performs an operation: vr1 → vr2

Incorrect as S2 assumes state vr0

Correct Behavior
S1 performs an operation, sends “version” 0: vr0 → vr1
S2 performs an operation, sends “version” 0:

Rejected as cached version is now 1 (vr1)

S2 receives update and patches to version 1 (vl1)
S2 can retry the operation

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Handling Concurrency 16

S1: Local object at state vl0
S2: Local object at state vl0
Cache: Object at state vr0

Incorrect Behavior
S1 performs an operation: vr0 → vr1
S2 performs an operation: vr1 → vr2

Incorrect as S2 assumes state vr0

Correct Behavior
S1 performs an operation, sends “version” 0: vr0 → vr1

S2 performs an operation, sends “version” 0:
Rejected as cached version is now 1 (vr1)

S2 receives update and patches to version 1 (vl1)
S2 can retry the operation

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Handling Concurrency 16

S1: Local object at state vl0
S2: Local object at state vl0
Cache: Object at state vr0

Incorrect Behavior
S1 performs an operation: vr0 → vr1
S2 performs an operation: vr1 → vr2

Incorrect as S2 assumes state vr0

Correct Behavior
S1 performs an operation, sends “version” 0: vr0 → vr1
S2 performs an operation, sends “version” 0:

Rejected as cached version is now 1 (vr1)

S2 receives update and patches to version 1 (vl1)
S2 can retry the operation

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Handling Concurrency 16

S1: Local object at state vl0
S2: Local object at state vl0
Cache: Object at state vr0

Incorrect Behavior
S1 performs an operation: vr0 → vr1
S2 performs an operation: vr1 → vr2

Incorrect as S2 assumes state vr0

Correct Behavior
S1 performs an operation, sends “version” 0: vr0 → vr1
S2 performs an operation, sends “version” 0:

Rejected as cached version is now 1 (vr1)

S2 receives update and patches to version 1 (vl1)
S2 can retry the operation

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Handling Concurrency 16

S1: Local object at state vl0
S2: Local object at state vl0
Cache: Object at state vr0

Incorrect Behavior
S1 performs an operation: vr0 → vr1
S2 performs an operation: vr1 → vr2

Incorrect as S2 assumes state vr0

Correct Behavior
S1 performs an operation, sends “version” 0: vr0 → vr1
S2 performs an operation, sends “version” 0:

Rejected as cached version is now 1 (vr1)

S2 receives update and patches to version 1 (vl1)

S2 can retry the operation

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Handling Concurrency 16

S1: Local object at state vl0
S2: Local object at state vl0
Cache: Object at state vr0

Incorrect Behavior
S1 performs an operation: vr0 → vr1
S2 performs an operation: vr1 → vr2

Incorrect as S2 assumes state vr0

Correct Behavior
S1 performs an operation, sends “version” 0: vr0 → vr1
S2 performs an operation, sends “version” 0:

Rejected as cached version is now 1 (vr1)

S2 receives update and patches to version 1 (vl1)
S2 can retry the operation

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Implementation & Evaluation 17

1 Motivation

2 High-Level Architecture

3 Update Propagation

4 Implementation & Evaluation

5 Conclusion

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Implementation 18

Implementation in Java
Supports the caching of Java objects
RMI-based API and client-side library
Dynamoth Pub/Sub service over Redis for update propagation

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Experimental Setup 19

All experiments run over McGill School of Computer Science
labs

One machine for the caching server, one machine for the client
Targeted experiments that model 3 specific use-cases of
CacheDOCS

1 Collaborative Graphics Editing
2 Maze Multiplayer Game Pathfinding
3 Collaborative Spreadsheet Editing

Compare the different propagation strategies

Future Work
Global performance & scalability of CacheDOCS with many clients
in the cloud

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Experimental Setup 19

All experiments run over McGill School of Computer Science
labs
One machine for the caching server, one machine for the client

Targeted experiments that model 3 specific use-cases of
CacheDOCS

1 Collaborative Graphics Editing
2 Maze Multiplayer Game Pathfinding
3 Collaborative Spreadsheet Editing

Compare the different propagation strategies

Future Work
Global performance & scalability of CacheDOCS with many clients
in the cloud

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Experimental Setup 19

All experiments run over McGill School of Computer Science
labs
One machine for the caching server, one machine for the client
Targeted experiments that model 3 specific use-cases of
CacheDOCS

1 Collaborative Graphics Editing
2 Maze Multiplayer Game Pathfinding
3 Collaborative Spreadsheet Editing

Compare the different propagation strategies

Future Work
Global performance & scalability of CacheDOCS with many clients
in the cloud

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Experimental Setup 19

All experiments run over McGill School of Computer Science
labs
One machine for the caching server, one machine for the client
Targeted experiments that model 3 specific use-cases of
CacheDOCS

1 Collaborative Graphics Editing

2 Maze Multiplayer Game Pathfinding
3 Collaborative Spreadsheet Editing

Compare the different propagation strategies

Future Work
Global performance & scalability of CacheDOCS with many clients
in the cloud

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Experimental Setup 19

All experiments run over McGill School of Computer Science
labs
One machine for the caching server, one machine for the client
Targeted experiments that model 3 specific use-cases of
CacheDOCS

1 Collaborative Graphics Editing
2 Maze Multiplayer Game Pathfinding

3 Collaborative Spreadsheet Editing

Compare the different propagation strategies

Future Work
Global performance & scalability of CacheDOCS with many clients
in the cloud

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Experimental Setup 19

All experiments run over McGill School of Computer Science
labs
One machine for the caching server, one machine for the client
Targeted experiments that model 3 specific use-cases of
CacheDOCS

1 Collaborative Graphics Editing
2 Maze Multiplayer Game Pathfinding
3 Collaborative Spreadsheet Editing

Compare the different propagation strategies

Future Work
Global performance & scalability of CacheDOCS with many clients
in the cloud

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Experimental Setup 19

All experiments run over McGill School of Computer Science
labs
One machine for the caching server, one machine for the client
Targeted experiments that model 3 specific use-cases of
CacheDOCS

1 Collaborative Graphics Editing
2 Maze Multiplayer Game Pathfinding
3 Collaborative Spreadsheet Editing

Compare the different propagation strategies

Future Work
Global performance & scalability of CacheDOCS with many clients
in the cloud

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Experimental Setup 19

All experiments run over McGill School of Computer Science
labs
One machine for the caching server, one machine for the client
Targeted experiments that model 3 specific use-cases of
CacheDOCS

1 Collaborative Graphics Editing
2 Maze Multiplayer Game Pathfinding
3 Collaborative Spreadsheet Editing

Compare the different propagation strategies

Future Work
Global performance & scalability of CacheDOCS with many clients
in the cloud

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Experiment 1 - Collaborative Graphics Editing 20

Cache: stores drawings | Client: performs a “rotate” operation

1) Sending Serialized Object High bandwidth
2) Sending Operation Low bandwidth, slightly higher time
3) Sending Binary Diff High bandwidth (rotation affects all pixels)

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Experiment 1 - Collaborative Graphics Editing 20

Cache: stores drawings | Client: performs a “rotate” operation

1) Sending Serialized Object High bandwidth
2) Sending Operation Low bandwidth, slightly higher time
3) Sending Binary Diff High bandwidth (rotation affects all pixels)

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Experiment 1 - Collaborative Graphics Editing 20

Cache: stores drawings | Client: performs a “rotate” operation

1) Sending Serialized Object High bandwidth

2) Sending Operation Low bandwidth, slightly higher time
3) Sending Binary Diff High bandwidth (rotation affects all pixels)

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Experiment 1 - Collaborative Graphics Editing 20

Cache: stores drawings | Client: performs a “rotate” operation

1) Sending Serialized Object High bandwidth
2) Sending Operation Low bandwidth, slightly higher time

3) Sending Binary Diff High bandwidth (rotation affects all pixels)

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Experiment 1 - Collaborative Graphics Editing 20

Cache: stores drawings | Client: performs a “rotate” operation

1) Sending Serialized Object High bandwidth
2) Sending Operation Low bandwidth, slightly higher time
3) Sending Binary Diff High bandwidth (rotation affects all pixels)

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Conclusion 21

1 Motivation

2 High-Level Architecture

3 Update Propagation

4 Implementation & Evaluation

5 Conclusion

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Conclusion and Future Work 22

Contributions
Caching of full dynamic (Java) objects
Invokation of remote operations over local copies of cached
objects
Forwarded to the master cached copy
Push-based dissemination of updates: several strategies
Consistency management
Experiments with 3 different use cases

Future Work
Better support for object nesting & inter-object links
Testing & optimizing CacheDOCS in the cloud (large-scale)
Dynamic selection of best propagation strategy

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Conclusion and Future Work 22

Contributions
Caching of full dynamic (Java) objects
Invokation of remote operations over local copies of cached
objects
Forwarded to the master cached copy
Push-based dissemination of updates: several strategies
Consistency management
Experiments with 3 different use cases

Future Work
Better support for object nesting & inter-object links
Testing & optimizing CacheDOCS in the cloud (large-scale)
Dynamic selection of best propagation strategy

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Invoking Methods 23

Invoked over synchronized copy vl of cached object vr with key k .

Types of methods

1 A- Deterministic, read-only methods (i.e., getter)
Operation executed locally

2 B- Non-deterministic methods or state-altering
The “method call” (signature + params) is serialized, sent to
the cache and executed

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Invoking Methods 23

Invoked over synchronized copy vl of cached object vr with key k .

Types of methods
1 A- Deterministic, read-only methods (i.e., getter)

Operation executed locally

2 B- Non-deterministic methods or state-altering
The “method call” (signature + params) is serialized, sent to
the cache and executed

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Invoking Methods 23

Invoked over synchronized copy vl of cached object vr with key k .

Types of methods
1 A- Deterministic, read-only methods (i.e., getter)

Operation executed locally
2 B- Non-deterministic methods or state-altering

The “method call” (signature + params) is serialized, sent to
the cache and executed

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Invoking Methods 23

Invoked over synchronized copy vl of cached object vr with key k .

Types of methods
1 A- Deterministic, read-only methods (i.e., getter)

Operation executed locally
2 B- Non-deterministic methods or state-altering

The “method call” (signature + params) is serialized, sent to
the cache and executed

Drawing Class Example

vo i d drawLine (i n t x1 , i n t y1 , i n t x2 , i n t y2 , Co lo r c o l o r) ; // Type B
vo i d drawRectang le (i n t x1 , i n t y1 ,

i n t x2 , i n t y2 , Co lo r c o l o r) ; // Type B
vo i d f i l l (i n t c o l o r) ; // Type B
vo i d g e t P i x e l (i n t x , i n t y) { r e t u r n p i x e l s (x , y) ; } ; // Type A

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

1- Serialized Update Strategy 24

Principle - Serialized Update Strategy

1 vr1 serialized and sent to all S ∈ S
2 All S deserialize vr1, and replace vl0 by vr1 in the local cache

Pros
Executed only once

CPU Intensive operations
For small objects:

Low propagation time
Low bandwidth

Cons
Large objects:

Long serialization time
Long propagation time
High bandwidth

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

1- Serialized Update Strategy 24

Principle - Serialized Update Strategy

1 vr1 serialized and sent to all S ∈ S
2 All S deserialize vr1, and replace vl0 by vr1 in the local cache

Pros
Executed only once

CPU Intensive operations
For small objects:

Low propagation time
Low bandwidth

Cons
Large objects:

Long serialization time
Long propagation time
High bandwidth

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

1- Serialized Update Strategy 24

Principle - Serialized Update Strategy

1 vr1 serialized and sent to all S ∈ S
2 All S deserialize vr1, and replace vl0 by vr1 in the local cache

Pros
Executed only once

CPU Intensive operations
For small objects:

Low propagation time
Low bandwidth

Cons
Large objects:

Long serialization time
Long propagation time
High bandwidth

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

2- Operation Update Strategy 25

Principle - Operation Update Strategy

1 Operation serialized and sent to all S ∈ S
2 All S unserialize and execute the operation on vl0 to obtain vl1

Pros
Great for large objects

They don’t have to be
serialized
Example: Drawing class

Cons
If the operation takes a long
time to execute

Execution will occur twice
(cache & client-side)

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

2- Operation Update Strategy 25

Principle - Operation Update Strategy

1 Operation serialized and sent to all S ∈ S
2 All S unserialize and execute the operation on vl0 to obtain vl1

Pros
Great for large objects

They don’t have to be
serialized
Example: Drawing class

Cons
If the operation takes a long
time to execute

Execution will occur twice
(cache & client-side)

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

2- Operation Update Strategy 25

Principle - Operation Update Strategy

1 Operation serialized and sent to all S ∈ S
2 All S unserialize and execute the operation on vl0 to obtain vl1

Pros
Great for large objects

They don’t have to be
serialized
Example: Drawing class

Cons
If the operation takes a long
time to execute

Execution will occur twice
(cache & client-side)

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

3- Binary Diff Update Strategy 26

Principle - Binary Diff Update Strategy

1 Cache serializes vr0 and vr1 computes the binary diff vr0 → vr1
2 Binary diff sent to all S ∈ S
3 All S patch the serialized vl0 with the diff, and deserialize to

obtain vr1

Pros
Large objects with
CPU-intensive operations

Smaller “patch” size?

Cons
Can be CPU-costly and thus
can take time

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

3- Binary Diff Update Strategy 26

Principle - Binary Diff Update Strategy

1 Cache serializes vr0 and vr1 computes the binary diff vr0 → vr1
2 Binary diff sent to all S ∈ S
3 All S patch the serialized vl0 with the diff, and deserialize to

obtain vr1

Pros
Large objects with
CPU-intensive operations

Smaller “patch” size?

Cons
Can be CPU-costly and thus
can take time

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

3- Binary Diff Update Strategy 26

Principle - Binary Diff Update Strategy

1 Cache serializes vr0 and vr1 computes the binary diff vr0 → vr1
2 Binary diff sent to all S ∈ S
3 All S patch the serialized vl0 with the diff, and deserialize to

obtain vr1

Pros
Large objects with
CPU-intensive operations

Smaller “patch” size?

Cons
Can be CPU-costly and thus
can take time

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

4- Attribute Patch Update Strategy 27

Principle - Attribute Patch Update Strategy

1 Cache sends dict of modified attributes (vr0 → vr1) to S ∈ S
2 All S patch vl0 with the new attributes to obtain vl1

Pros
Large-objects and
CPU-intensive operations

Serialization-deserialization
+ diff avoided
Only one execution

Cons
Requires developpers to tag
the set of changed attributes
for each method

Bandwidth
Incoming / Outgoing bandwidth usage
Server-side & client-side

Time
1 Server: execute operation
2 Server: generate update message

Serializing, diff, etc.
3 Server: send update to client
4 Client: deserialize & apply update

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

4- Attribute Patch Update Strategy 27

Principle - Attribute Patch Update Strategy

1 Cache sends dict of modified attributes (vr0 → vr1) to S ∈ S
2 All S patch vl0 with the new attributes to obtain vl1

Pros
Large-objects and
CPU-intensive operations

Serialization-deserialization
+ diff avoided
Only one execution

Cons
Requires developpers to tag
the set of changed attributes
for each method

Bandwidth
Incoming / Outgoing bandwidth usage
Server-side & client-side

Time
1 Server: execute operation
2 Server: generate update message

Serializing, diff, etc.
3 Server: send update to client
4 Client: deserialize & apply update

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

4- Attribute Patch Update Strategy 27

Principle - Attribute Patch Update Strategy

1 Cache sends dict of modified attributes (vr0 → vr1) to S ∈ S
2 All S patch vl0 with the new attributes to obtain vl1

Pros
Large-objects and
CPU-intensive operations

Serialization-deserialization
+ diff avoided
Only one execution

Cons
Requires developpers to tag
the set of changed attributes
for each method

Bandwidth
Incoming / Outgoing bandwidth usage
Server-side & client-side

Time
1 Server: execute operation

2 Server: generate update message
Serializing, diff, etc.

3 Server: send update to client
4 Client: deserialize & apply update

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

4- Attribute Patch Update Strategy 27

Principle - Attribute Patch Update Strategy

1 Cache sends dict of modified attributes (vr0 → vr1) to S ∈ S
2 All S patch vl0 with the new attributes to obtain vl1

Pros
Large-objects and
CPU-intensive operations

Serialization-deserialization
+ diff avoided
Only one execution

Cons
Requires developpers to tag
the set of changed attributes
for each method

Bandwidth
Incoming / Outgoing bandwidth usage
Server-side & client-side

Time
1 Server: execute operation
2 Server: generate update message

Serializing, diff, etc.

3 Server: send update to client
4 Client: deserialize & apply update

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

4- Attribute Patch Update Strategy 27

Principle - Attribute Patch Update Strategy

1 Cache sends dict of modified attributes (vr0 → vr1) to S ∈ S
2 All S patch vl0 with the new attributes to obtain vl1

Pros
Large-objects and
CPU-intensive operations

Serialization-deserialization
+ diff avoided
Only one execution

Cons
Requires developpers to tag
the set of changed attributes
for each method

Bandwidth
Incoming / Outgoing bandwidth usage
Server-side & client-side

Time
1 Server: execute operation
2 Server: generate update message

Serializing, diff, etc.
3 Server: send update to client

4 Client: deserialize & apply update

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

4- Attribute Patch Update Strategy 27

Principle - Attribute Patch Update Strategy

1 Cache sends dict of modified attributes (vr0 → vr1) to S ∈ S
2 All S patch vl0 with the new attributes to obtain vl1

Pros
Large-objects and
CPU-intensive operations

Serialization-deserialization
+ diff avoided
Only one execution

Cons
Requires developpers to tag
the set of changed attributes
for each method

Bandwidth
Incoming / Outgoing bandwidth usage
Server-side & client-side

Time
1 Server: execute operation
2 Server: generate update message

Serializing, diff, etc.
3 Server: send update to client
4 Client: deserialize & apply update

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Experiment 2 - Maze Multiplayer Game Pathfinding 28

Cache: stores mazes which contain cells and players
Client: performs a “movePlayer” operation ⇒ pathfinding to
check if move legal. If yes, player position changed.
Attributes: {list of all players}.

1) Sending Serialized Object Very high bandwidth (n2 #cells)
2) Sending Operation Very low bandwidth, high execution time
3) Sending Binary Diff Very low bandwidth, high execution time
4) Sending Attributes Very low bandwidth, low execution time

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Experiment 2 - Maze Multiplayer Game Pathfinding 28

Cache: stores mazes which contain cells and players
Client: performs a “movePlayer” operation ⇒ pathfinding to
check if move legal. If yes, player position changed.
Attributes: {list of all players}.

1) Sending Serialized Object Very high bandwidth (n2 #cells)
2) Sending Operation Very low bandwidth, high execution time
3) Sending Binary Diff Very low bandwidth, high execution time
4) Sending Attributes Very low bandwidth, low execution time

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Experiment 2 - Maze Multiplayer Game Pathfinding 28

Cache: stores mazes which contain cells and players
Client: performs a “movePlayer” operation ⇒ pathfinding to
check if move legal. If yes, player position changed.
Attributes: {list of all players}.

1) Sending Serialized Object Very high bandwidth (n2 #cells)

2) Sending Operation Very low bandwidth, high execution time
3) Sending Binary Diff Very low bandwidth, high execution time
4) Sending Attributes Very low bandwidth, low execution time

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Experiment 2 - Maze Multiplayer Game Pathfinding 28

Cache: stores mazes which contain cells and players
Client: performs a “movePlayer” operation ⇒ pathfinding to
check if move legal. If yes, player position changed.
Attributes: {list of all players}.

1) Sending Serialized Object Very high bandwidth (n2 #cells)
2) Sending Operation Very low bandwidth, high execution time

3) Sending Binary Diff Very low bandwidth, high execution time
4) Sending Attributes Very low bandwidth, low execution time

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Experiment 2 - Maze Multiplayer Game Pathfinding 28

Cache: stores mazes which contain cells and players
Client: performs a “movePlayer” operation ⇒ pathfinding to
check if move legal. If yes, player position changed.
Attributes: {list of all players}.

1) Sending Serialized Object Very high bandwidth (n2 #cells)
2) Sending Operation Very low bandwidth, high execution time
3) Sending Binary Diff Very low bandwidth, high execution time

4) Sending Attributes Very low bandwidth, low execution time

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Experiment 2 - Maze Multiplayer Game Pathfinding 28

Cache: stores mazes which contain cells and players
Client: performs a “movePlayer” operation ⇒ pathfinding to
check if move legal. If yes, player position changed.
Attributes: {list of all players}.

1) Sending Serialized Object Very high bandwidth (n2 #cells)
2) Sending Operation Very low bandwidth, high execution time
3) Sending Binary Diff Very low bandwidth, high execution time
4) Sending Attributes Very low bandwidth, low execution time

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Experiment 3 - Collaborative Spreadsheet Editing 29

Cache: stores spreadsheets: list of cells with values or formulas.
Client: alter the value of a cell, which might impact the values
of other cells (topological sort).

1) Sending Serialized Object Huge bandwidth (n2) and time
2) Sending Operation Low bandwidth, very low execution time
3) Sending Binary Diff Low bandwidth, high execution time (small

diff but long to compute)

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Experiment 3 - Collaborative Spreadsheet Editing 29

Cache: stores spreadsheets: list of cells with values or formulas.
Client: alter the value of a cell, which might impact the values
of other cells (topological sort).

1) Sending Serialized Object Huge bandwidth (n2) and time
2) Sending Operation Low bandwidth, very low execution time
3) Sending Binary Diff Low bandwidth, high execution time (small

diff but long to compute)

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Experiment 3 - Collaborative Spreadsheet Editing 29

Cache: stores spreadsheets: list of cells with values or formulas.
Client: alter the value of a cell, which might impact the values
of other cells (topological sort).

1) Sending Serialized Object Huge bandwidth (n2) and time

2) Sending Operation Low bandwidth, very low execution time
3) Sending Binary Diff Low bandwidth, high execution time (small

diff but long to compute)

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Experiment 3 - Collaborative Spreadsheet Editing 29

Cache: stores spreadsheets: list of cells with values or formulas.
Client: alter the value of a cell, which might impact the values
of other cells (topological sort).

1) Sending Serialized Object Huge bandwidth (n2) and time
2) Sending Operation Low bandwidth, very low execution time

3) Sending Binary Diff Low bandwidth, high execution time (small
diff but long to compute)

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Experiment 3 - Collaborative Spreadsheet Editing 29

Cache: stores spreadsheets: list of cells with values or formulas.
Client: alter the value of a cell, which might impact the values
of other cells (topological sort).

1) Sending Serialized Object Huge bandwidth (n2) and time
2) Sending Operation Low bandwidth, very low execution time
3) Sending Binary Diff Low bandwidth, high execution time (small

diff but long to compute)

Motivation High-Level Architecture Update Propagation Implementation & Evaluation Conclusion Extra Slides

Sources for images 30

http://learningworksforkids.com/wp-content/uploads/WoW-
screen-2.jpg

https://lh4.googleusercontent.com/yUAOWyj2Gt_oVbLjJpPQnhX1QkN-
IrwBvPAmPx6pnaihOxg9VRHZt7p28g5qUUbO013b6If-
Mw=s640-h400-e365

	Motivation
	High-Level Architecture
	Update Propagation
	Implementation & Evaluation
	Conclusion

