
CacheDOCS: A Dynamic Key-Value Object
Caching Service

Julien Gascon-Samson∗
Department of Electrical and Computer Engineering

University of British Columbia
Vancouver, BC, Canada

∗Email: julien.gascon-samson@ece.ubc.ca

Michael Coppinger†, Fan Jin†, Jörg Kienzle‡, Bettina Kemme‡
School of Computer Science

McGill University, Montreal, QC, Canada
†Email: {michael.coppinger,fan.jin}@mail.mcgill.ca

‡Email: {joerg,kemme}@cs.mcgill.ca

Abstract—Caching plays an important role in many domains,
as it can lead to important performance improvements. A key-
value based caching system typically stores the results of popular
queries in efficient storage locations. While caching enjoys
widespread usage in the context of dynamic web applications,
most mainstream caching systems store static binary items, which
makes them impractical for many real-world applications that
would benefit from storing dynamic items.

In this paper, we propose CacheDOCS, a dynamic key-value
object caching service that allows for caching arbitrary objects.
As part of our model, CacheDOCS provides an API that supports
the execution of operations against cached objects, and allows
for clients to seamlessly subscribe to keep their local copies in
sync with cached remote objects. CacheDOCS supports multiple
update dissemination strategies in order to optimize performance,
and proposes a versioning mechanism to ensure consistency. We
implemented a full version of CacheDOCS and we ran several
performance-related experiments under three use-case scenarios.

I. INTRODUCTION

Caching plays an important role in many domains nowa-
days, as the use of such techniques can significantly reduce
the load on systems that need to process complex operations,
by typically storing the results of commonly-requested queries
in efficient storage locations. Key-value based caching notably
enjoys widespread usage in the world of web applications, as
these applications often generate large amounts of complex
queries that are processed repeatedly and in parallel. In this
context, the results of commonly-executed queries are cached
in fast memory such as in RAM [7], [1], [12]. Then, should
multiple clients be launching the same complex query over a
given time interval, then the query can be launched only once,
and the cached result can be reused, which can reduce the load
on the database system.

While web applications constitute the de facto usage pat-
tern of caching systems, other applications can benefit from
caching as well. For instance, a large-scale multiplayer game
might benefit from caching the large pool of in-game objects
that players frequently access. Alternatively, a collaborative
document editing platform might cache the documents that
users are currently accessing. An important limitation of
mainstream caching systems however is that they are typically
static, which means that changes cannot be applied to a
given cached item; instead, upon changing, the value must
be overwritten (more details given at section II-A). A second
limitation is that upon a given cached value changing, clients

are not notified of the change. In a web application context,
these limitations might be acceptable, as the cached result of
a given database query might simply overwrite the previous
result of the query, and that clients typically perform database
requests (or access the cache) on-demand; i.e., in a pull-
based manner. However, in other applications, such as the two
examples aforementioned, which might benefit more from a
push-based paradigm and in which data items are expected to
be updated, the use of a static caching system might not be a
suitable choice.

In this paper, we propose CacheDOCS, an object-based key-
value caching service that extends the principles of mainstream
key-value stores in order to capture the dynamism and meet
the needs of push-based applications. For instance, in a mul-
tiplayer game context, the caching of game-specific objects
that can be dynamically retrieved and updated by players
could alleviate the load on the game server infrastructure. In
a collaborative document editing platform scenario, objects
representing the documents that are being edited by several
users could be stored in the cache; thus alleviating the load
on the service-specific server infrastructure.

As major contributions, CacheDOCS provides three main
improvements over the typical key-value store model:

1) Full objects can be cached as opposed to byte sequences.
2) Objects can be updated by allowing for methods to be

invoked over cached objects, following the principles of
remote method invocation (RMI).

3) Interested clients can transparently be notified and their
local copy of a given cached object can automatically be
updated whenever an update is performed on the cached
object, following a publish/subscribe model.

This paper provides the following additional contributions:
• We provide a consistency model that prevents conflicting

updates on cached objects, and that maintains the consis-
tency of local copies of cached objects

• We provide several object update dissemination strategies
to reduce bandwidth usage and increase performance

• We built a full system implementation in Java, using RMI
[10] and using the Dynamoth [8] pub/sub platform

• We ran several experiments under three use cases to
analyze our system under various scenarios

This paper is organized as follows: in section II, we present
some background concepts on which CacheDOCS is built; in



section III, we present the architecture and the model of our
system; in section IV, we describe our implementation and
the various experiments that we ran; in section V, we present
the related work and finally, in section VI, we present our
conclusions and future work.

II. BACKGROUND

A. Key-Value Stores
Key-value stores such as the well-known Memcached open-

source platform maintain a list of {k, v} pairs, where k is a
key and v is the value corresponding to key. Such systems
can be viewed as large-scale hash tables. k and v are typically
byte sequences; as a result, storing an object as a value requires
serialization. For efficiency purposes, some or all of the {k, v}
pairs are stored in RAM.

Key-value stores provide get(k) and put(k, v) operations
to respectively retrieve an item v from key k, and to store
a given {k, v} pair. From a developer’s standpoint, prior to
computing v from k, one typically looks whether k exists
in the cache, and uses the corresponding value if it exists.
Otherwise, v is computed from k (in a web/database context,
a given database query k would be sent to the database engine
to be computed to obtain v). Then, the pair {k, v} is put in
the cache for future read accesses. Note that the update of v
requires a new invocation of put.

B. Publish-Subscribe
The publish-suscribe (pub/sub) paradigm [6] allows for effi-

cient decoupling of content producers from content consumers
by proposing a model where content consumers, referred to
as subscribers, express interest in receiving some content, and
where content producers, referred to as publishers, generate
content that is disseminated to interested subscribers.

Several pub/sub variants have been proposed in the litera-
ture; the most common ones being topic-based and content-
based publish/subscribe. In topic-based pub/sub, subscriptions
are expressed over topics, which is typically a string. Publi-
cations are also tagged with a topic, and are disseminated to
subscribers that have previously subscribed to the correspond-
ing topic. In contrast, in content-based pub/sub, subscriptions
are expressed over more elaborate predicates, which results in
a more complex matching process that matches the contents of
the publications themselves against the subscription predicates
in order to determine to which subscribers they should be
issued. Content-based pub/sub is outside the scope of this
paper and we will focus our attention on topic-based pub/sub,
which bears some similarities with key-value stores, as both
make use of a key as a decoupling and indexing mechanism.

Conceptually, a topic-based pub/sub service, such as Dy-
namoth [8] or Redis [1], maintains a list of pairs {t, S},
where t is a topic and serves as a key and S is a set of
subscribers for topic t. Topic-based pub/sub systems typically
expose three main operations: subscribe(t), which adds the
caller (subscriber) to S, unsubscribe(t), which removes the
subscriber from S, and publish(t,m), which transmits pub-
lication message m to the subscribers of t. Many applications
can be built over topic-based pub/sub systems, such as push-
based notification systems or distributed event-based systems,

RMI
Interface

RMI
Stub

Consistency
Manager

Master
Object

Object
Manager

PubSub
Client

Object Cache

PubSub
Middleware

Publish Subscribe
Server

Local
Object

Consistency
Manager

PubSub
Client

Object
Manager

Client Application

Update Update

Remote Invocation

Figure 1: Architecture of CacheDOCS

in which event consumers can subscribe to events that they
are interested in receiving and in which event producers can
push relevant events to interested consumers.

III. SYSTEM MODEL

Our system, CacheDOCS, proposes an augmented key-value
based caching service that supports the caching of arbitrary
objects across many different applications. In addition to
adding and removing objects from the cache, it also supports
the execution of arbitrary operations (methods) over cached
objects. Finally, it allows clients to subscribe to objects for
which they wish to be notified of changes, and it keeps the
local copy of cached objects fully synchronized with the cache.

Figure 1 presents the high-level architecture of Cache-
DOCS. As an implementation choice, our caching service
allows for storing Java objects and exposes an API through a
Java RMI interface that clients use to interact with the service.
To simplify, we take that model as an example to describe
our system, but in practice, a different implementation could
support arbitrary languages and communication paradigms.

A. Object Caching as a Service
The object cache service, denoted on the right, accepts

requests from clients and stores pairs of {k, v} in the object
manager, where v is a Java object that maps to key k. The
CacheDOCS API, exposed through a RMI interface, supports
the typical key-value store operations get(k) and set(k, v)
to respectively retrieve and store a Java object (from now on,
we denote a remotely cached object as vr, to distinguish from
a local copy vl). The invocation of a get operation returning
remote object vr first triggers the serialization of vr, then the
transmission of the serialized state to the client, which then
deserializes it to reconstruct a local copy vl of the fetched
object. The same process is followed in reverse order to store
objects in the cache (set operation). Note that as an optimiza-
tion, upon serializing an object vr, CacheDOCS caches the
serialized sequence of bytes to reduce the performance costs
of serialization. Note that the get and set operations offer
a level of features comparable to a typical key-value store,
with the addition that they support the storage and retrieval of
objects and not only sequence of bytes.

B. Synchronization of Cached Objects
The basic get operation mentioned in the previous sec-

tion does not maintain a link with the cached object vr;
i.e., it retrieves a snapshot of the currently cached version
of vr. As a consequence, locally performed updates (local



method calls) are not propagated to the cache and remote
method calls performed on the cache on are propagated to
the caller of get. For that reason, CacheDOCS also exposes
a getAndSubscribe(k) operation, which first allows one to
retrieve an object vr, and then keep in sync the changes
carried out on the local copy vl and on the remote copy
vr. Upon getAndSubscribe being invoked for key k, a
pub/sub subscription is also established on topic k, through
the pub/sub middleware on the pub/sub server (which can
be collocated with the cache service). Then, on client side
(left of figure 1), the pair {k, vl} is registered with the local
object manager, which, in conjunction with the remote object
manager, is linked to the pair {k, vr} to provide two way
synchronization. The following section describes the process
by which operations are invoked on cached objects.

C. Invoking Operations
After retrieving a synchronized copy vl of a cached object

vr, a given client can invoke operations (methods) on vl.
Methods can be classified into two categories: A- deterministic
read-only methods that do not alter the state of the object (i.e.,
functions which simply return a value such as a getter), and B-
all other methods which alter the state of the object (or which
are read-only and non-deterministic). Note that in our current
implementation, a developer relying on the CacheDOCS API
must indicate which methods belong to category A, through
Java annotations. We are currently looking at code analysis
techniques to automate this process.

For methods of category A, there is no need to forward
the operation invocation to the remote cache manager, as a
given local object vl contains the same set of attributes as
the corresponding remote object vr. As such methods only
access vl’s attributes, and that all attributes are synchronized
upon retrieving vr, then it can be executed locally. However,
for methods of class B, the invocation must be forwarded to
the remote cache. To do so, the local object manager traps all
method calls requiring forwarding. When the invocation of one
such corresponding method is requested, the method signature
as well as all of it’s parameters are serialized. Then, the call is
automatically dispatched to the remote object manager through
RMI.

Upon receiving the method invocation request, the remote
object manager deserializes the method signature along with
the parameters, locates the relevant object vr through it’s key
k, and invokes the method using reflection, which triggers a
state change of vr. In order to make sure that all subscribers
S to k obtain the latest version of vl, CacheDOCS propagates
the update to all S ∈ S through the pub/sub interface, using
one of several possible strategies, which are discussed in the
next section.

D. Update Propagation Strategies
CacheDOCS supports four different propagation strategies

to disseminate object updates to subscribers. For each strat-
egy, we discuss their usefulness and trade-offs in terms of
bandwidth and CPU usage. We consider a key k, a remote
object at states vr0 and vr1, respectively before and after the
invocation of the requested operation, a corresponding local

object vl0 (before applying the update) and vl1 (after applying
the update) for every subscriber S ∈ S to k. Note that we
assume that vr0 = vl0 and vr1 = vl1.

1) Serialized Object Update Strategy: vr1 is serialized
and sent to all subscribers. As mentioned previously, as
an optimization, CacheDOCS will cache vr1 after an initial
serialization. Then, S performs deserialization, and replaces
vl0 by vl1 in the local cache. This strategy can be efficient
for small objects, as the propagation time and the bandwidth
should remain low. It can also be efficient for CPU-intensive
operations, as they will need to be executed only once (on
the remote cache). For large objects, however, it might be
inefficient, and bandwidth consumption might be very high.

2) Operation Update Strategy: The method invocation
along with the parameters is sent to all subscribers in serialized
form. Then, all subscribers invoke the operation over vl0 in
their local cache to obtain vl1, following the same principle
as for clients sending their method invocations to the service,
as described at section III-C. This strategy can be efficient for
large objects, as the serialization of the operation will most
likely be small. It might be less efficient for CPU-intensive
operations as the operations will need to be executed both on
the remote server and locally.

3) Binary Diff Update Strategy: Remote object states vr0
and vr1 and converted to binary form through serialization.
Then, a binary diff is computed between the binary repre-
sentations of the the new and old states, and transmitted to
subscribers. The subscribers must then serialize vl0, apply the
binary diff and deserialize the patched binary representation to
obtain the new state vl1. This strategy can be costly in terms of
CPU usage, but it can nevertheless be a good choice for CPU-
intensive operations executed against a large object, as it can
yield similar benefits as the serialized object update strategy
with potentially smaller update sizes.

4) Attribute Patch Update Strategy: A list of attributes that
were changed in vr1 compared to vr0 is computed (pairs of
{attr, newVal}) and sent to all subscribers. Using reflection,
each subscriber patches each attribute that was modified. Note
that in our current implementation, we require developers
using the CacheDOCS API to tag the set of attributes that are
changed by a given method, using Java annotations. We are
currently investigating the use of static and dynamic analysis
techniques to automate this process. This strategy can be
efficient for large objects and CPU-intensive operations, as
the performance hit of serialization-deserialization and binary
diff generation can be avoided, as well as the performance hit
of executing the operation twice (on the remote cache, then
on the local copy).

E. Consistency Management
As with any distributed system, consistency issues may

arise due to the interleaving of transactions. Considering a
local object at state vl0 and a corresponding remote object
at state vr0. Assuming both subscribers S1 and S2 perform
an operation simultaneously, the remote object cache could
generate states vr1 and vr2. This would be incorrect, as both
S1 and S2 assumed object v to be at state vr0 prior to executing
the operation, which might be dangerous.



The remote and local consistency manager components are
in charge of tracking such inconsistencies. Upon submitting an
operation for object v to the remote cache, a given subscriber
S piggybacks it’s current version number for object v. In the
example above, the consistency manager would accept the first
operation (let it be from S1), and would then reject the second.
S2 would be notified of the execution failure, then would be
updated to state vl1 and could then decide whether to reinvoke
the operation at the new local state vl1.

On the other hand, the local consistency manager is in
charge of preventing concurrent accesses to a given object
v; i.e., to prevent v from being simultaneously accessed and
updated to a newer version through the pub/sub interface. Due
to space constraints, the exact mechanism cannot be entirely
described here.

F. Nested Objects

Our current iteration of CacheDOCS supports the storage of
nested Java objects, but with the limitation that we only trap
direct method calls over the root object, and not method calls
invoked over nested sub-objects. We are currently investigating
mechanisms that would allows us to trap nested calls using
aspect-oriented programming (AspectJ [9]) as well as an
extension which would allow our service to support the storage
of linked objects; i.e., assuming object vA contains a reference
to vB , and that both objects are stored in the cache, then an
update operation performed on vA should also impact vB .

IV. IMPLEMENTATION AND EXPERIMENTS

A. Implementation

As mentioned previously, we built a full implementation of
CacheDOCS in Java, and our object caching service caches
Java objects. The service offers a RMI-based API that clients
can consume to access the cache, retrieve, store and subscribe
to Java objects, as well as a client-side library which handles
transparent synchronization of updates on tracked local ob-
jects. We chose the Dynamoth [8] publish/subscribe service
running on top of the Redis middleware to support object
update dissemination.

As mentioned previously, an alternate implementation could
be made to support other languages and object paradigms,
while applying the principles of our model.

B. Experimental Setup

All of our experiments were executed over machines of the
McGill’s School of Computer Science labs. For all experi-
ments, one machine was used to run the caching service, and
one machine was used as a client to the service.

Note that in the context of this paper, we opted to run
targeted experiments that model three specific use-cases in
which CacheDOCS could be used. For all experiments, we
analyze and compare the performance of the different update
propagation strategies, under two angles:

1) The incoming and outgoing bandwidth usage incurred
by the operation invocation on the client (client tx and
client rx curves) and on the server (server tx and server
rx curves).

(a) Bandwidth Usage (b) Operation Invocation Time

Figure 2: Collaborative Graphics Editing Results

2) The time needed (1) for the server to execute the opera-
tion (server processing time curve), (2) for the server
to generate the update dissemination message to be
sent through the pub/sub interface (message processing
time curve), (3) for the server to disseminate the update
back to the client (latency curve) and (4) for the client
to deserialize the update and apply the update (client
processing time curve).

In all graphs, the various propagation strategies are denoted as
follows: (a) Serialized Object Update is labelled as SOM, (b)
Operation Update is labelled as OPM, (c) Binary Diff Update
is labelled as BDM and (d) Attribute Patch Update is labelled
as AM.

As future work, we will be looking at evaluating the global
performance as well as the scalability of a real deployment of
CacheDOCS in the cloud with large amounts of clients.

C. Collaborative Graphics Editing

The goal of this experiment is to model clients working
on a distributed graphics editing application, in which the
images that are being edited are stored as objects in the
cache. As a result, the operations are submitted to the cache,
which disseminates the updates to the clients using the various
strategies. As part of our experiment, we invoked an image
rotate method call over an image of various sizes (from 3.15
to 66.8 megapixels). Our results are shown in figure 2.

An image rotation operation becomes fairly expensive over
larger images; thus, significant server processing time is re-
quired on the server (figure 2b), and on the client for OPM
(as the operation itself is forwarded). However, for that same
reason, bandwidth usage (figure 2a) is minimal for OPM
compared to the other approaches which require sending a
large amount of data (the full serialized state for SOM or the
binary diff for BDM). Note that since a rotation transforms all
pixels, the binary diff approach is very inefficient.

Overall, the SOM approach leads to an overall lower oper-
ation invocation time although the difference is not marginal.
Therefore, in this context, the OPM approach would most
likely be the best one as it performs only slightly worse
than SOM, but it uses practically no bandwidth. Note that



(a) Bandwidth Usage - Full (b) Bandwidth Usage - Partial (c) Operation Invocation Time - Full (d) Operation Invocation Time - Partial

Figure 3: Maze Multiplayer Game Pathfinding Results

we omitted AM, as an image object does not really contain
attributes, but raw pixels stored in an array.

D. Maze Multiplayer Game Pathfinding

The goal of this experiment is to model a maze game appli-
cation with several players. In the context of this experiment,
we store a maze object which contains a 2D array of cells and
a list of players. For each cell, there can be four possible walls
(left, right, up, bottom), represented by boolean values. Each
player contains a cell position. For our experiments, we invoke
a movePlayer method on the maze object, over mazes of
varying sizes (1000x1000 to 5000x5000). This method uses a
pathfinding algorithm to determine if a given player is allowed
to move from his current cell to another target cell. Note that
for the Attribute Patch (AM) strategy, the invocation of this
method modifies the list of players attribute of the maze class.

Our results are shown in figure 3. In subfigures 3a and 3b,
we respectively show the bandwidth usage for all strategies,
and for all strategies except SOM, as it is higher by order of
magnitudes. In figures 3c and 3d, we respectively show the
operation invocation time results for all maze sizes, and for
maze sizes between 1000x1000 and 3000x3000 only, as the
growth is quadratic.

We first observe that the bandwidth usage of SOM becomes
extremely high as the quadratic maze size increases (for that
reason, we omitted the execution of SOM for maze sizes above
3000x3000). For all other strategies, the bandwidth remains
very small and almost constant. This is explained by the fact
that OPM only sends the operation to be invoked, that BDM
only sends a diff, which is efficient as very few changes are
carried out to the large object and that AM only sends the list
of players attribute, which is marginal compared to the size of
the maze tiles attribute.

Regarding the operation invocation time, we observe that
it grows in a linear-like pattern as the total number of cells
increases. In all approaches, as it can be expected, the server
processing time is the same, as the server takes the same
time to execute the operation. The pathfinding algorithm takes
a significant time to be executed over large mazes, as can
be expected. With OPM, we practically double that time, as

(a) Bandwidth Usage (without SOM) (b) Operation Invocation Time

Figure 4: Collaborative Spreadsheet Editing Results

clients also need to execute this same algorithm; therefore,
OPM is the worst choice in large mazes. As SOM requires a
large amount of bandwidth, the propagation delay (latency)
takes a considerable time. For BDM, a significant time is
also spent at client-side to apply the binary patch, which is
almost comparable to the operation execution time. To a lesser
extent, BDM also adds some processing overhead (to generate
the diff) server-side. AM is then the most efficient approach
in this case, as it is lighter than all other approaches (the
only noticeable processing time is attributed to the operation
invocation itself server-side).

E. Collaborative Spreadsheet Editing

In this experiment, we model a multi-user collaborative
spreadsheet editing tool à la Google Sheets. The cache is used
to store spreadsheet objects which are then retrieved by clients
to perform operations and receive updates. The spreadsheet
object contains a list of cells. Each cell can hold a value or
a formula. In the case of a formula, the cell might depend
on a set of other cells. Thus, upon a user editing a cell, a
topological sorting of the dependent cells must be performed,
and these cells need to be reevaluated as well.



The cells in the first column are initially set to 1 and the
remaining cells, except for the last column, are set to the sum
of the previous cells in the row. The cells in the last column
are set to the sum of all previous cells in the column. We
ran experiments over spreadsheets of size 50x50, 100x100,
150x150 and 200x200. In each experiment, we set the value
of the first cell (0, 0), and we analyze the performance of this
invocation. The results are given in figure 4.

The bandwidth results (subfigure 4a) do not include SOM,
as these results were larger by orders of magnitude compared
to the other approaches: for a size of 50x50, approximately
2000 kb, for 100x100, 16000 kb and for 150x150, 52000 kb.
For performance considerations, the SOM strategy was not
executed for the 200x200 spreadsheet. Note that results for
AM could not be generated, since as mentioned previously,
annotations must be declared manually in this version of
CacheDOCS and that our spreadsheet model contains an array
of cells (one large array attribute).

Our SOM results reveal that this strategy exhibits the worse
performance, both from a bandwidth usage standpoint; i.e.,
the whole spreadsheet has to be serialized, and also from a
invocation time standpoint, as the serialized spreadsheet is
transferred over the network, which causes huge bottlenecks.

On the other end, despite the fact that the OPM strategy
involves the execution of the method twice (server-side and
client-side), it is nevertheless the most efficient approach in
this case as bandwidth usage remains approximately constant
irrespective of the spreadsheet size, as only the operation itself
is transmitted. As for the BDM strategy, it is also very efficient
bandwidth-wise, as the modification of only one cell has very
limited impact on the size of the diff. However, a significant
amount of time is spent on preparing the diff server-side and
patching and deserializing client-side.

V. RELATED WORK

To the best of our knowledge, we found no approaches that
were similar to what CacheDOCS provides and that offered
an equivalent set of features.

The RMI system itself [10] can be used to build a partial
caching service, as proxies to objects can be exported and
retrieved through the network. Then, method calls can be
invoked on proxies of remote objects, which results in a
remote execution. While concurrency is permitted, it must be
manually handled by the use of appropriate Java constructs.
Unlike our proposal, RMI itself does not provide transparent
and dynamic update dissemination. As mentioned previously,
we make use of RMI in our current implementation, in combi-
nation with other mechanisms. [4] proposes such a RMI-based
approach and discusses the problem of the commutativity of
method invocations over distributed objects. In [5], the authors
propose a caching middleware for RMI applications, through
the form of a drop-in replacement, which allows for some of
the operations on distributed objects to be executed locally,
and then applied later or in batch to the remote object, in
order to increase performance. In [3], the authors propose an
approach for caching object graphs across different clusters,
and compare their solution against RMI. In [2], the authors
apply load balancing techniques to distribute cached items

among multiple servers. Their approach notably exploits the
popularity and the inter-item relationships.

As opposed to SQL databases, object databases store data in
a manner that allows for direct mapping between programming
language objects and the data representation [13], [11]. Nev-
ertheless, we think that CacheDOCS goes further as it allows
for the execution of arbitrary operations through the form of
method invocations on any arbitrarily cached object.

VI. CONCLUSION

In this paper, we presented CacheDOCS, a dynamic object
caching service that extends the concept of a typical key-value
store by allowing for full objects to be cached. CacheDOCS
allows for updates to be applied on cached objects, and
includes a pub/sub-based notification mechanism to efficiently
dispatch updates to relevant clients in a transparent manner.
Several update propagation strategies are provided to maxi-
mize performance and minimize bandwidth, and consistency is
ensured through the use of a versioning-based update protocol.

As future work, we would like to offer better support for
object nesting and for inter-object links. We are also planning
on optimizing and testing CacheDOCS in a cloud-based,
very large-scale setting. Finally, we are aiming at integrating
dynamic selection of the best propagation strategy, as well as
multi-server support in the cloud.

REFERENCES

[1] Redis website (2013), http://www.redis.io/
[2] Asad, O., Kemme, B.: Adaptcache: Adaptive data partitioning and

migration for distributed object caches. In: Proceedings of the 17th
International Middleware Conference. pp. 7:1–7:13. Middleware ’16,
ACM, New York, NY, USA (2016)

[3] Banditwattanawong, T., Maruyama, K., Hidaka, S., Washizaki, H.:
Proxy-and-hook: a java-based distributed object caching. In: INDIN ’05.
2005 3rd IEEE International Conference on Industrial Informatics, 2005.
pp. 819–824 (Aug 2005)

[4] Eberhard, J., Tripathi, A.: Semantics-based object caching in distributed
systems. IEEE Transactions on Parallel and Distributed Systems 21(12),
1750–1764 (Dec 2010)

[5] Eberhard, J., Tripathi, A.: Efficient Object Caching for Distributed
Java RMI Applications, pp. 15–35. Springer Berlin Heidelberg, Berlin,
Heidelberg (2001)

[6] Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many
faces of publish/subscribe. ACM Comput. Surv. 35(2), 114–131 (2003)

[7] Fitzpatrick, B.: Distributed caching with memcached. Linux J.
2004(124), 5– (Aug 2004)

[8] Gascon-Samson, J., Garcia, F.P., Kemme, B., Kienzle, J.: Dynamoth: A
scalable pub/sub middleware for latency-constrained applications in the
cloud. In: ICDCS 2015. pp. 486–496 (June 2015)

[9] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold,
W.G.: An Overview of AspectJ, pp. 327–354. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2001)

[10] Krishnaswamy, V., Walther, D., Bhola, S., Bommaiah, E., Riley, G.,
Topol, B., Ahamad, M.: Efficient implementations of java remote method
invocation (rmi). In: Proceedings of the 4th Conference on USENIX
Conference on Object-Oriented Technologies and Systems - Volume 4.
pp. 2–2. COOTS’98, USENIX Association, Berkeley, CA, USA (1998)

[11] Roopak, K.E., Rao, K.S.S., Ritesh, S., Chickerur, S.: Performance
comparison of relational database with object database (db4o). In:
2013 5th International Conference and Computational Intelligence and
Communication Networks. pp. 512–515 (Sept 2013)

[12] Waddington, D., Colmenares, J., Kuang, J., Song, F.: Kv-cache: A
scalable high-performance web-object cache for manycore. In: 2013
IEEE/ACM 6th International Conference on Utility and Cloud Com-
puting. pp. 123–130 (Dec 2013)

[13] Wells, D.L., Blakeley, J.A., Thompson, C.W.: Architecture of an open
object-oriented database management system. Computer 25(10), 74–82
(Oct 1992)


