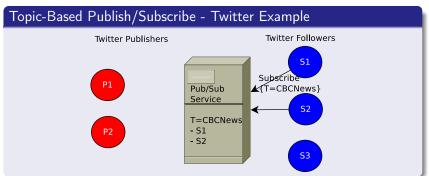
MultiPub: Latency and Cost-Aware Global-Scale Cloud Publish/Subscribe ICDCS 2017

Julien Gascon-Samson, Bettina Kemme, Jörg Kienzle

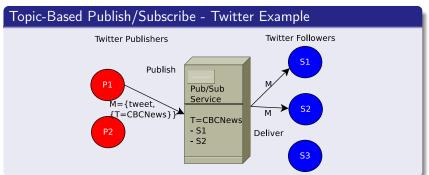
Post-Doctoral Fellow @ Univerity of British Columbia Current Advisor: Dr Karthik Pattabiraman Department of Electrical and Computer Engineering Vancouver, Canada

Work completed under the advisement of: Dr Bettina Kemme and Dr Jörg Kienzle School of Computer Science, McGill University Montreal, Canada



Tuesday June 6th, 2017

Topic-Based Publish/Subscribe


- Provides an elegant way to decouple content producers (publishers) from content consumers (subscribers)
- Very common flavour of pub/sub
- Subscription language: a key (topic name)
- ullet Publications tagged with a topic T, sent to all subscribers of T

Conclusion

Topic-Based Publish/Subscribe

- Provides an elegant way to decouple content producers (publishers) from content consumers (subscribers)
- Very common flavour of pub/sub
- Subscription language: a key (topic name)
- Publications tagged with a topic T, sent to all subscribers of T

Traffic alert systems

Weather alert systems

Mobile notif. frameworks

Social networks

Chat/IM systems

Multiplayer Games

Traffic alert systems

Weather alert systems

Cloud:

Mobile notif. frameworks

Social networks

Chat/IM systems

Multiplayer Games

Cloud:

Scalability & Elasticity

Traffic alert systems

Weather alert systems

Architecture & Model

Cloud:

- Scalability & Elasticity
- Availability & Fault Tolerance

Mobile notif. frameworks

Chat/IM systems

Social networks

Multiplayer Games

Traffic alert systems

Mobile notif. frameworks

Chat/IM systems

Weather alert systems

Social networks

Multiplayer Games

Cloud:

- Scalability & Elasticity
- Availability & Fault Tolerance

Challenge:

- Guarantee suitable delivery times
- Reducing cloud-induced costs

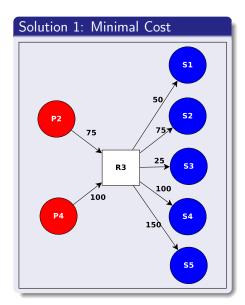
EC2 Cloud Regions - Cost vs Latency

Region	Location	\$/GB	Region	Location	\$/GB
us-east-1	N. Virginia	0.09	ap-northeast-1	Tokyo	0.14
us-west-1	N. California	0.09	ap-northeast-2	Seoul	0.126
us-west-2	Oregon	0.09	ap-southeast-1	Singapore	0.12
eu-west-1	Ireland	0.09	ap-southeast-2	Sydney	0.14
eu-central-1	Frankfurt	0.09	sa-east-1	Sao Paulo	0.25

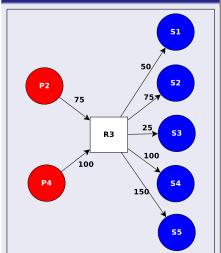
EC2 Cloud Regions - Cost vs Latency

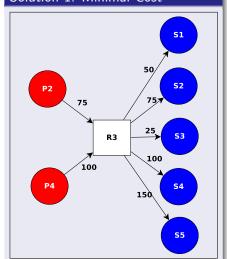
Region	Location	\$/GB	Region	Location	\$/GB
us-east-1	N. Virginia	0.09	ap-northeast-1	Tokyo	0.14
us-west-1	N. California	0.09	ap-northeast-2	Seoul	0.126
us-west-2	Oregon	0.09	ap-southeast-1	Singapore	0.12
eu-west-1	Ireland	0.09	ap-southeast-2	Sydney	0.14
eu-central-1	Frankfurt	0.09	sa-east-1	Sao Paulo	0.25

Example Scenario

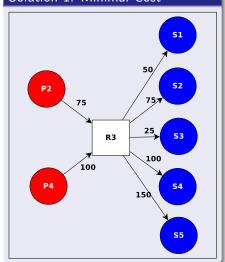


- Large-Scale MMOG: World of Warcraft
 - Assuming ~ 5 M active subscribers
 - Bandwidth usage 10-20 mb/hour per player
 - Assuming a playing time of 2 hours/day per player
 - Total yearly outgoing bandwidth: 50 TB
 - Assuming 90% of all delivery times should be \leq 150 ms
 - Topic-based pub/sub model


Latency & Cost Analysis


Latency & Cost Analysis

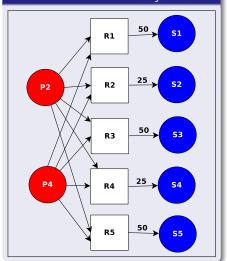
Latencies
75+25
75+50
100+25
75+75
100+50
100+75
75+100
100+100
75+150
100+150


Solution 1: Minimal Cost

Latencies		Latencies
75+25		100
75+50		125
100+25		125
75+75		150
100+50	\Rightarrow	150
100+75		175
75+100		175
100+100		200
75+150		225
100+150		250

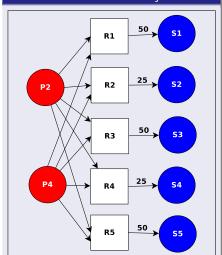
Solution 1: Minimal Cost

Cost Computation


R	\$/gb	% Publications
R_1	0.25	
R_2	0.126	
R ₃	0.09	100%
R ₄	0.14	
R_5	0.14	

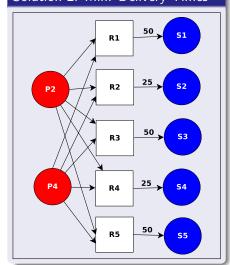
- Assuming: total bandwidth 50TB
- Yearly cost: 4.5M\$

Latency & Cost Analysis

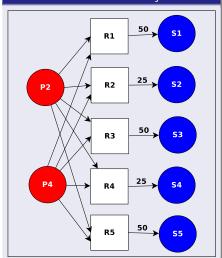


Solution 2: Min. Delivery Times

Latency & Cost Analysis

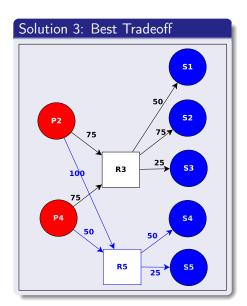

Solution 2: Min. Delivery Times

Latencies
25+25
25+25
50+25
50+25
50+50
50+50
75+50
75+50
75+50
100+50


Solution 2: Min. Delivery Times

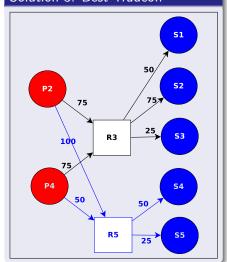
Late	Latencies	
5	0	
5	0	
7	5	
7	5	
\Rightarrow 10	00	
10	00	
1:	25	
1:	25	
1:	25	
1.	50	
	5 5 7 7 7 10 10 12 12	

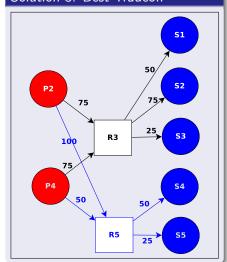
Solution 2: Min. Delivery Times



Cost Computation

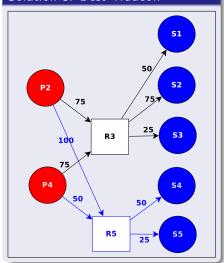
R	\$/gb	% Publications
R_1	0.25	20%
R_2	0.12	20%
R ₃	0.09	20%
R_4	0.14	20%
R_5	0.14	20%


- Assuming: total bandwidth 50TB
- Yearly cost: 4.5M\$ 7.4M\$


Solution 3: Best Tradeoff

Latencies
50+25
50+50
75+25
75+25
75+50
75+50
100+25
75+75
75+75
100+50

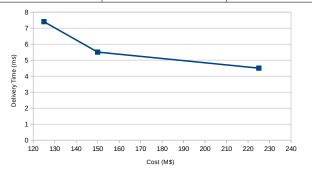
Solution 3: Best Tradeoff



Latencies		Latencies
50+25		75
50+50		100
75+25		100
75+25		100
75+50	\Rightarrow	125
75+50		125
100+25		125
75+75		150
75+75		150
100+50		150

Latency & Cost Analysis

Solution 3: Best Tradeoff


Cost Computation

R	\$/gb	% Publications
R_1	0.25	
R_2	0.12	
R ₃	0.09	60%
R ₄	0.14	
R_5	0.14	40%

- Assuming: total bandwidth 50TB
- Yearly cost: 4.5M\$ 7.4M\$ 5.5M\$

Optimization Problem

	90% delivery time	Yearly Costs
1) Cost-Minimizing	225 ms	4.5M\$
2) Latency-Minimizing	125 ms	7.4M\$
3) Best Tradeoff	150 ms	5.5M\$

 Minimizing cloud costs, while meeting the needs of latency-constrained applications

Conclusion & Future Work

Please have a look at our paper for evaluation results.

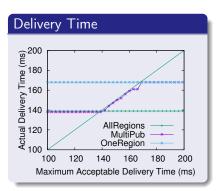
Summary of Contributions

- Goal: minimizing the cost of topic-based pub/sub-based applications in the cloud while respecting latency constraints
- Optimization problem: assign topics to cloud regions
- Two different delivery schemes
- Full model implementation & several simulation experiments

Conclusion & Future Work

Please have a look at our paper for evaluation results.

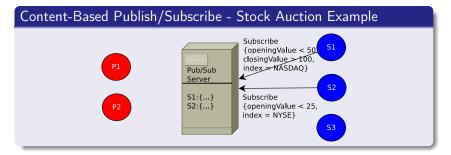
Summary of Contributions


- Goal: minimizing the cost of topic-based pub/sub-based applications in the cloud while respecting latency constraints
- Optimization problem: assign topics to cloud regions
- Two different delivery schemes
- Full model implementation & several simulation experiments

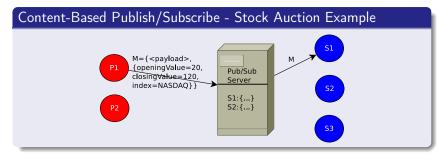
Future Work

- Clustering and heuristic approaches
- Supporting content-based pub/sub
- Taking VM rental costs into consideration
- Multiple clouds

Results

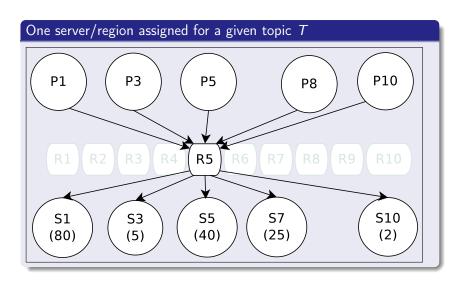


Content-Based Publish/Subscribe

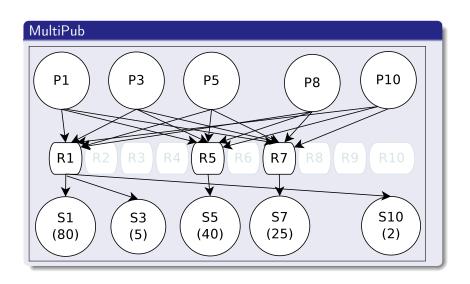

- Also referred to as attribute-based pub/sub
 - Lots of research attention over the past years
 - Subscription language: predicate over metadata or over the data itself
 - Matching process: non-trivial (can be CPU-intensive)

Content-Based Publish/Subscribe

- Also referred to as attribute-based pub/sub
 - Lots of research attention over the past years
 - Subscription language: predicate over metadata or over the data itself
 - Matching process: non-trivial (can be CPU-intensive)


Publication Delivery Time

											_
	R ₁	R ₂	R ₃	R4	R ₅	R ₆	R ₇	R ₈	Rg	R ₁₀	
R ₁	-	33	42	41	45	74	92	109	115	60	
R ₂	34	-	11	74	84	52	68	88	79	93	
R ₃	42	11	-	70	79	45	60	81	01	02-	
R4	41	74	70	-	10	107	122	105		7	
R ₅	45	84	79	11	-	117	135	126	- W		
R ₆	73	52	45	107	117	-	17	38	230 St. Parish I Ocean	2.4	Equals and store
R ₇	89	68	60	122	133	17	-	34	67	144	
R ₈	109	88	81	97	126	38	34	-	88	164	
Rg	115	79	81	155	162	52	67	88	-	171	
R10	60	93	91	96	100	129	144	165	171	-	


Typical Delivery Approach

MultiPub

