
1

MultiPub: Latency and Cost-Aware
Global-Scale Cloud Publish/Subscribe

Julien Gascon-Samson, Jörg Kienzle, Bettina Kemme
School of Computer Science, McGill University

Montreal, QC H3A 0E9, Canada
Email: Julien.Gascon-Samson@cs.mcgill.ca,{Joerg.Kienzle,Bettina.Kemme}@mcgill.ca

Abstract—Topic-based pub/sub is a widely used communica-
tion mechanism in distributed systems for targeted informa-
tion dissemination between loosely coupled entities. To scale
dynamically depending on the current communication demands,
pub/services can be conveniently deployed in the cloud. To
provide fast dissemination, the service can be distributed across
multiple cloud regions. The architectural design and run-time
deployment of such a middleware is tricky, though, as it can
have a significant effect on communication latency and cloud-
based cost. In this paper, we propose MultiPub, a flexible pub/sub
middleware for latency-constrained, world-wide distributed ap-
plications that dynamically reconfigures the communication layer
to ensure a predefined maximum latency for publication dissem-
ination while minimizing cloud-based costs. This is achieved by
routing publications either through a single or across multiple
cloud regions. We demonstrate the effectiveness of MultiPub
by presenting a set of experiments that report on the achieved
communication latency and cost savings compared to traditional
approaches, as well as a performance evaluation.

I. INTRODUCTION

The publish/subscribe paradigm (pub/sub) and design pat-
tern allows for decoupling content producers (publishers) from
content consumers (subscribers) in an elegant, yet simple way.
In the most common, topic-based pub/sub model, subscribers
declare their interest by subscribing to topics. Publishers send
publication messages by tagging each publication with the
topic it belongs to. The publication is then disseminated
to all subscribers that are interested in the topic [14]. All
communication is done through a pub/sub middleware to
which both publishers and subscribers connect.

Due to the simple yet flexible model, topic-based pub/sub
systems are used across a wide range of small to large-
scale applications, such as social media, chat/group systems,
weather and traffic alert systems, among many others. Well-
known large-scale applications of topic-based pub/sub are
push-notification systems for mobile devices such Google
Cloud Messaging, where applications register as subscribers
to receive notifications, and where publishers push relevant
notifications towards applications [2]. Large-scale multiplayer
online games also make use of pub/sub for efficient dissemi-
nation of game-related updates to players [16], [20], [12].

Many of these applications have stringent latency require-
ments. Games usually require very tight latency bounds in
order to provide an enjoyable and immersive experience for
gamers from less than 150 ms for first-person-shooter games
to an upper bound of 500 ms for role-playing games [9].
Push-notification systems used for alerts and monitoring ap-
plications also have tight latency requirements. Any grouping
service with audio- or video-dissemination also falls into

this category. Meeting the needs of such latency-constrained
applications with participants in several regions of the world
can be challenging.

Deploying the pub/sub infrastructure in the cloud brings
many advantages, such as virtually unlimited scalability and
optimized connections to the Internet backbone, which can
lead to better delivery times. Also attractive for latency-
constrained applications is the fact that cloud providers usually
offer clouds in different regions, so that users can connect to
the service instance in their region leading to fast client/server
interaction. However, cloud providers charge on a per-use
basis, whereby outgoing bandwidth cost is likely to be the
most costly factor for a pub/sub dissemination service. This
and the fact that costs can vary significantly from region to
region require a careful look at how and where to deploy a
pub/sub service across cloud regions such as to both provide
performance to the users and keep cost at bay.

In this paper, we propose MultiPub, a fully dynamic global-
scale topic-based pub/sub middleware, tailored towards ap-
plications which require meeting strict delivery time bounds.
MultiPub allows the user to set timing constraints on a per-
topic basis, and ensures that such constraints are respected
whenever possible. Depending on client locations, delivery
bounds and cloud costs, a given topic can be managed by
server(s) within a single or multiple cloud regions. MultiPub
automatically finds the best configuration in terms of costs
that does not violate delivery guarantees, and reconfigures
whenever conditions change.

In particular, our paper provides the following contributions:
• We provide a ready-to-use dynamic global-scale topic-

based pub/sub middleware that can be deployed as a
service in the cloud.

• Our approach takes advantage of cloud providers that
offer clouds in geographically dispersed regions and
considers their specific characteristics (bandwidth costs,
latencies), in order to generate an optimal configuration
in terms of assigning regions to serve topics and clients.
Two different message routing approaches are supported.

• Our system automatically collects and analyzes real-time
measurements from all nodes and continuously reconfig-
ures itself whenever a more appropriate configuration is
found. The process is entirely transparent to users.

• We have built a complete simulation package to exten-
sively evaluate our model under different scenarios.

• We have gathered real latency measurements towards
and between all regions of the Amazon EC2 cloud [3].
Combined with the King dataset [17], we derive realistic
client latency values to conduct realistic experiments.

2

R Region Location $EC2 $Inet

R1 us-east-1 N. Virginia 0.02 0.09
R2 us-west-1 N. California 0.02 0.09
R3 us-west-2 Oregon 0.02 0.09
R4 eu-west-1 Ireland 0.02 0.09
R5 eu-central-1 Frankfurt 0.02 0.09
R6 ap-northeast-1 Tokyo 0.09 0.14
R7 ap-northeast-2 Seoul 0.08 0.126
R8 ap-southeast-1 Singapore 0.09 0.12
R9 ap-southeast-2 Sydney 0.14 0.14
R10 sa-east-1 Sao Paulo 0.16 0.25

Table I: EC2 Outgoing Bandwidth Costs

II. MULTIPUB MODEL

MultiPub is a topic-based cloud publish/subscribe middle-
ware that is tailored for latency-constrained, world-scale ap-
plications. MultiPub servers can be installed in as many cloud
regions as necessary to serve clients. Given a set of regions,
and a topic with its publishers and subscribers, MultiPub
automatically determines which regions should serve the topic
considering that publishers and subscribers are located world-
wide and have varying latencies towards the different regions.
The decision takes into account two factors. First, delivery
times should be kept under a user-defined threshold. Second,
since the use of the cloud incurs costs on a pay-per-use basis,
MultiPub chooses, among the configurations that fulfill the
delivery constraints, the configuration that is the cheapest in
terms of cloud costs. Table I shows the 10 regions offered by
Amazon EC2. Throughout this paper, we use this region setup
as an example for both latency as well as cost calculations.

A. Delivery Constraints vs. Cost Minimization
With MultiPub, a delivery time constraint can be specified

for each topic T . The constraint specifies the maximum
allowed delivery time (maxT) for a ratio of all publications
received across T (ratioT). For instance, maxT = 200 and
ratioT = 95 mean that 95% of all messages sent on T should
be delivered within 200 ms or less. MultiPub makes sure that
this constraint is respected whenever possible. However, in
some cases, it might be unrealistic, as some clients might ex-
perience very high latencies due to the use of bad connections,
or the requested maxT threshold might simply be too low. If
the constraint cannot be met, then MultiPub finds the most
latency-minimizing configuration. A configuration for a topic
T defines the regions which serve the topic, as well as for any
publisher or subscriber client, to which server(s) they connect.
We will discuss the configuration options shortly.

The MultiPub cost model only considers bandwidth-related
costs as this is by far the dominating factor. Given the
simplicity of topic-based matching the costs related to message
dissemination are much higher than CPU costs. In current
cloud infrastructures, cloud inbound bandwidth is typically
free, while there are different costs associated with outgoing
bandwidth towards other cloud regions and outgoing band-
width to external clients. As the baseline for this paper,
Table I details the costs in terms of outgoing bandwidth of
the various EC2 regions. Column $EC2 gives the costs of
1GB of outgoing data sent towards another EC2 region, while

column $Inet lists the costs of 1GB of data sent towards
any node on the Internet. We observe that the outgoing costs
in some regions (Asia and South America) are very expensive
compared to others. Thus, it might be worth avoiding to route
topics through servers in regions with expensive bandwidth
costs if the delivery constraints allow for such optimization.

B. Configuration Options

Supporting publishers and subscribers in different cloud
regions, while ensuring that latency constraints are respected,
can be challenging. Figure 1 presents different approaches
combining several cloud regions that can be used to process
publications on a given topic T . Assuming the 10 EC2 regions
and topic T with 5 publishers, one each close to the regions
R1, R3, R5, R8, and R10 respectively, and 5 groups of sub-
scribers, each group being close to one of these five regions,
and having 80, 5, 40, 25, and 2 subscribers respectively.

1) One Region: In the simplest case (shown in figure 1a),
the pub/sub middleware in only one region is in charge of
publications on topic T (for instance, region R5, in Frankfurt).
In this scenario, all publishers and subscribers for this topic
connect to the service in this region. With this setup, some
clients will experience very high latencies due to fact that some
publications will travel for long and/or cross ocean distances
twice. For instance, upon P1 (close to region R1, i.e., North
Virginia) publishing to T , the publication needs to travel from
P1’s location to the cloud region R5 (long distance), where the
pub/sub service then sends the publications to all subscribers.
All subscribers except of group S5 will receive the publication
only after a long delay as they are far away from R5. The
advantage of this approach is, however, that is offers a very
cheap solution, as R5 is one of low-cost regions.

2) All Regions: This approach involves statically having
pub/sub servers in all cloud regions handle T . This scheme
allows for minimizing delivery times, since each subscriber
automatically uses its closest, local cloud region (figures 1b
and 1c). With the direct delivery approach (figure 1b), upon
publishing, all publishers send all publications towards all
regions (note that the figure only shows publications from one
publisher to simplify). One problem of this approach is that all
publishers must send their publications to all regions, which
can be cumbersome, in particular as outgoing bandwidth might
be a limiting factor for some publishers.

Routed delivery (figure 1c) is an alternative scheme where
publishers only send towards their local, closest region (again,
only one publisher is shown in the figure). The local region
then forwards the publication to the pub/sub service in all other
regions. This scheme solves the issue of publishers publishing
towards all regions, at the expense of increased delivery costs
due to the additional outgoing, inter-region cloud bandwidth
costs. Although the cost is generally smaller then sending to
clients, it can still sum up quickly.

At first view it might appear that using the direct delivery
approach will always yield lower latencies than routed delivery
as messages always only travel two hops (from publisher to
the service, and from there to the subscribers) while routed
delivery has one further redirection (from cloud region to
another cloud region). However, as inter-cloud links are often
more optimized, the actual latencies can vary significantly,
and thus direct delivery might have lower latency in some

3

(a) One Region (b) All Regions / Direct (c) All Regions / Routed (d) MultiPub / Direct Delivery

Figure 1: Publication Delivery Approaches

Figure 2: MultiPub Architecture

configuration while routed delivery can have lower latency in
other configurations. Section V-D describes an experiment that
compares direct against routed delivery. An obvious drawback
of the all regions approach is that this scheme forces all
regions to be used for topic T despite some regions having
very few or no clients, thus consuming additional potentially
unnecessary resources, and being potentially more expensive
due to the usage of regions exhibiting higher costs.

3) MultiPub: MultiPub finds the best combination of cloud
regions to use among all possible regions for topic T . MultiPub
also determines whether direct or routed delivery should be
used. Figure 1d shows an example of MultiPub with only 3
regions selected for topic T out of the 10 possible regions,
using the direct delivery approach. Since there are very few
subscribers in regions R3 and R10, MultiPub chooses to
ignore these regions. Subscribers close to these two regions
are assigned to region R1 instead, since this region happens to
be their second closest region. As this was the case for the “all
regions” approach, MultiPub can also opt for routed delivery
(not shown in the figure). In that case, publisher P3 would
publish towards its closest available region (R1 in Virginia,
since R3 in Oregon has not been selected by MultiPub for
topic T). The MultiPub instance installed in R1 forwards the
publication to R5 and R8.

III. SYSTEM ARCHITECTURE AND MODELLING

In this section, we first holistically describe the architecture
of MultiPub (depicted in Figure 2). We then describe the
pub/sub model more formally.

A. Architecture
1) Server Clusters: Each cloud region has an instance of

the MultiPub service. The pub/sub matching itself can be
performed by one server or a set of servers. MultiPub uses
internally Dynamoth [15], a pub/sub service that automatically
and dynamically provisions the number of servers needed to
handle the current load on all topics installed. However, in
principle, we could use any scalable pub/sub platform that
can be deployed in a single cloud. We consider supporting
multiple servers per region as an orthogonal problem since
intra-region scalability can be managed locally, on a per-region
basis, without altering the way in which MultiPub behaves. To
simplify, we assume there is a single server per region, and
use the terms “service” and “server” interchangeably.

2) Assigning Regions to Topics: MultiPub allows topics to
be handled by one or more regions. The mapping of topics to
regions is expressed as a bit matrix, referred to as assignment
matrix, with the columns being the regions and the rows being
the topics. The row for topic T contains a 1 for each column
representing a region that serves the topic, and a 0 for regions
that do not serve the topic.

3) Region Managers: Each region has a region manager
component that collects real-time data for every topic T
maintained by the region, including the list of all publishers
who publish to T , the list of subscribers who have subscribed
to T , as well as the number of messages and their sizes
in bytes sent by each publisher over T . Data is collected
throughout a collection interval, and then sent to the MultiPub
Controller which can then determine overall delivery times and
bandwidth costs and make necessary adjustments.

4) MultiPub Controller: The MultiPub controller is in-
stalled in one of the regions. It aggregates the data received
from the region managers. Furthermore, it maintains for each
topic T , the delivery constraint < ratioT ,maxT > (where the
ratioT percentile of messages must be delivered to subscribers
within a time bound of maxT). Finally, it keeps track of
the latencies between every client C in the pub/sub system
(publisher or subscriber) and each of the cloud regions, as
well as the latency between each pair of cloud regions.

5) Deploying a New Configuration: Using the latency val-
ues, combined with the latest information about each topic
collected by the region managers, the MultiPub controller
continuously recomputes an optimal configuration for topic
T . If a better configuration is found, it is sent in the form
of a bit vector to the region managers which then incorporate
them into their assignment matrix. The new configuration also
has to be sent to affected clients of this topic. This process is
handled by the region managers: upon a configuration change
being requested for a given topic T , the region manager in

4

each region R informs the clients (subscribers and publishers)
that were closest to R latency-wise (in the old configuration)
that a new configuration must be used for T .

Then, if a region was added for T , and the new region is
closer to a given subscriber than any previous region of this
topic, then the subscriber has to connect to the new region.
Correspondingly, if a region was removed, then the subscribers
that were currently connected to this region must reconnect to
the next closest region. Similar holds for publishers.

For example, assuming a scenario with a topic T with
10 publishers and 10 subscribers in North America and 10
publishers and 10 subscribers in Europe, and only a server in
Region R1 assigned to T . The MultiPub controller determines
that subscribers in Europe experience delivery times that are
over the threshold for a significant portion of the publications
that they receive (more precisely, for all publications sent from
a publisher in Europe and received by a subscriber in Europe,
as these messages cross the Atlantic twice). The controller
then decides that T should now map to two regions: R1 (us-
east-1) and R5 (eu-central-1) with a direct delivery approach
in order to meet delivery constraints. All 20 publishers need
to receive the new configuration so that they now send their
publications to both regions, as well as the 10 subscribers in
Europe as they have to resubscribe to the European region R5.
With this, any message now crosses the Atlantic at most once.

B. Publishers, Subscribers, Regions and Publications
Assuming a particular configuration for a topic T , consisting

of publishers, subscribers and a set of regions containing the
MultiPub service that handle T , we show how delivery times
and the bandwidth costs over a given time period can be
formally calculated.

We consider a total of N total
R regions. Taking topic T, we

denote with NP the number of publishers for T , with NS

the number of subscribers to T and with NR the number of
regions that are assigned to T . S =

{
S1, . . . , SNS

}
is the set

of subscribers for topic T , P =
{
P1, . . . , PNP

}
is the set of

publishers for T , and R = {R1, . . . , RNR
} is the set of regions

serving T .
As discussed before, we consider both direct delivery where

a publisher P sends a message to all regions in R, and routed
delivery where it sends it to only one region, denoted as RP ,
who then forwards it to the other regions in R. RP is the
region that is the closest (latency-wise) to P . All subscribers
of topic T connect to only one region RS ∈ R, namely the
closest. We denote with SR ⊂ S the subset of subscribers that
use region R to receive publications on topic T , and with NR

S
the number of subscribers that subscribe to topic T on region
R. Therefore, NS =

∑
R∈RN

R
S .

Given a publication message M sent by publisher P on a
given topic T , M is sent to each of the regions R∈ R (either by
P directly or through RP) and then each region R forwards it
to all the NR

S subscribers, leading to NR messages towards all
cloud regions handling T and a total of NS messages towards
all subscribers.

C. Latency Model
A subscriber S to topic T connects to RS ∈ R, which

is the closest region. Similar holds for publishers in case
of routed delivery. To determine the qualifying region, we

maintain a latency matrix L, where each row represents a
client C (either a publisher or a subscriber) and each column a
cloud region R. There is a total of N total

R columns, that is, also
columns for regions that do currently not serve topic T . Entry
LCR indicates the expected one-way latency (message delivery
time) between client C and region R (either direction). Thus,
a subscriber S (publisher P) connects to RS ∈ R (RP ∈ R)
with the smallest LSRS (LPRP) value among all regions in
R. We assume LCR to remain constant, but our model still
holds if the value is updated over time at an infrequent rate.
For instance, the infrastructure can monitor latency changes
between every client C and every available region R and
update LCR accordingly.

We also define a further matrix (LR), which represents one-
way latencies between pairs of cloud regions. LR

RiRj
denotes

the latency between region Ri and region Rj . Obviously
LR
RiRi

= 0. Results for the 10 regions of the Amazon EC2
cloud were determined and are presented in section V-A1. As
mentioned previously, the MultiPub controller optimizes the
placement of topics on cloud regions as well as the delivery
approach by taking L and LR into consideration.

D. Publication Delivery Time
The total delivery time D(MPS) of any given publication

M sent from publisher P on topic T towards subscriber S
depends on whether direct or routed delivery is used. For
simplification purposes, we assume that the processing time
of message M at any node is negligible which we believe is
reasonable given that finding the list of subscribers for a given
topic can be implemented as a simple lookup operation.

1) Expected Direct Delivery Time: Publisher P directly
sends its publication to all regions R ∈ R, which then forward
it to their local subscribers. Thus, the delivery includes two
hops and is calculated for subscriber S connected to the closest
region RS as

DDirect

(
MPS

)
= LPRS + LRSS (1)

2) Expected Routed Delivery Time: Publisher P sends its
publication M towards its local region RP , i.e., the one with
minimal latency. RP then forwards M to all other R ∈ R.
Each region then forwards M to their local subscribers. Thus,
the delivery includes either two hops (for the subscribers with
RS = RP) or three hops, and can be calculated as

DRouted

(
MPS

)
= LPRS + LR

RPRS + LRSS (2)

E. Publish/Subscribe Cost Model
As mentioned, the MultiPub cost model only considers

bandwidth-related costs. In the following, we designate with
α(R) the cost per outgoing byte from region R towards a
different region (derived from column $EC2 in table I), and
with β(R) the cost per outgoing byte towards any client-
subscriber of R (derived from column $Inet).

In order to calculate the overall bandwidth costs for our
approaches, we need some further information about the
number of messages per collection interval and their size.
Thus, for each publisher P we need to know the number of
messages NP

M sent by P to topic T, and for each of these
messages MP

1 ,M
P
2 , ... MNP

M
its size Ω(MP

j) in bytes.

5

With this, we can calculate the total costs ZDirect for topic
T using the direct delivery approach:

ZDirect =

NP∑
k=1

NP
M∑

j=1

NR∑
i=1

NRi

S × Ω(MPk
j)× β(Ri) (3)

That is, for each publisher P , for each of its messages MP
j

and for each of the regions Ri serving topic T , the outgoing
bandwidth is the size of the message multiplied by the number
of subscribers using region Ri multiplied by the bandwidth
costs per byte.

The total costs ZRouted for topic T using the routed delivery
approach have to additionally consider that the region local to
a publisher P forwards the message to all other regions serving
topic T (of which there are NR − 1):

ZRouted = ZDirect+

NP∑
k=1

NP
M∑

j=1

(NR − 1)× Ω(MPk
j)× α(RP)

(4)

IV. OPTIMIZATION PROBLEM

For each topic T , the MultiPub controller determines on
a regular basis the optimal configuration given the topic’s
delivery constraint < ratioT ,maxT >, the publishers and
subscribers of T in the last observation interval, and the
number and size of the messages sent by the publishers in
that observation interval. To this aim, the controller has to
consider every possible assignment of the topic to the existing
regions. An assignment for T can be encoded as a bit vector:
the bit for each region can either be set (topic assigned to the
region) or not set. As this represents one row of the assignment
matrix, we refer to it as assignment vector V for topic T . Thus,
given that there are a total of N total

R regions, then there are
2N

total
R − 1 possible assignments (it is not possible that all

region bits are zero). Furthermore, if at least two bits are set,
then there is the option of either direct or routed delivery.
Thus, there are a total of 2 × (2N

total
R − 1) -N total

R possible
configurations. Although this is exponential in the number of
regions, one has to be aware that the number of regions is fairly
small. For each of these configurations, MultiPub calculates
what would have been the delivery times for all messages
sent in the last observation interval, in order to determine if the
configuration is a suitable one; i.e., if it would have fulfilled the
topic’s delivery constraint < ratioT ,maxT >. Then, among
all suitable configurations, it determines the best one.

A. Checking for Delivery Constraint

Given a possible configuration C for topic T (possible value
for assignment vector V and either direct or routed delivery),
MultiPub first determines for each subscriber S ∈ S (and in
case of routed delivery publisher P ∈ P) the closest region
RS (RP) for which the bit is set in V . With this, it calculates
for each publisher P and subscriber S the latency D(MPS)
observed for sending a publication from P to S as expressed
in Equations 1 and 2 of Section III-D for direct and routed
delivery, respectively.

From there, MultiPub creates a list DC which contains for
each publisher P and for each of its messages MP

1 ,M
P
2 ,

... MNP
M

sent in the observation interval, the delivery times
(either DDirect(M

PS
i) or DRouted(MPS

i)). DC is sorted by
delivery time with the shortest delivery time first. The car-
dinality |DC| is the total number of messages sent between
publishers and subscribers, i.e., the total sum of all messages
sent by all publishers multiplied by the number of subscribers
NS×

∑NP

k=1N
Pk

M . The delivery constraint for topic T requires
that a fraction of ratioT messages be delivered in at most
maxT time. This can be translated into checking whether the
nT -ieth delivery time in the sorted list DC is still at most
maxT where:

nT =

⌈
ratioT

100
× |DC|

⌉
(5)

We refer to this nT -ieth delivery time as delivery time
percentile D̊C for configuration C and it has to be lower or
equal to maxT . The following constraint has to be fulfilled
for C to be further considered.

D̊C = DC
[
nT
]
≤ maxT (6)

B. Determining the Optimal Solution
Given a possible configuration C that fulfills the delivery

constraint, the bandwidth cost ZC is then calculated according
to equations 3 and 4 of Section III-E. After having determined
the delivery time percentile and bandwidth costs for each
configuration C, we sort the configurations by costs. Then
we take the configuration with the lowest cost that fulfills the
delivery constraint. If there are several configurations that have
the same lowest cost, we choose the one that has the lowest
delivery time percentile. If there are several that also have the
same delivery time percentile then we choose the one that uses
the least amount of servers. In contrast, if no configuration
fulfills the delivery constraint we take the one with the lowest
delivery time percentile irrespectively of its cost.

C. Independence of Topics
MultiPub minimizes costs for all topics, while respecting all

constraints (whenever possible) for every topic. Minimizing
the costs for every topic leads to a global minimization of the
overall costs. Since there is no global constraint, or inter-topic
constraints, all topics can then be considered as independent.
Therefore, we have a distinct optimization problem for each
topic. In other words, the outcome of optimizing one single
topic will not impact the optimization of any other topic.

D. Handling Clients experiencing High Latencies
It might happen that some clients temporarily experience

higher latencies, which might put them at a disadvantage, as
all of their latencies could potentially fall above the requested
delivery time percentile over a given topic T . As a mitigation
mechanism, the MultiPub controller periodically scans for
such clients. Upon detecting one such client C, then the
controller verifies whether forcing the addition of any given
cloud region to the currently selected list of regions for T
would allow for the latency needs of C to be met (if possible),
or to be improved significantly. Should that be the case, then
the region is added to the list of regions, and when it becomes
no longer needed, it is removed.

6

V. EXPERIMENTAL VALIDATION

In this section, we analyze the behaviour and performance of
MultiPub under a wide range of configurations. Unfortunately,
running cross-cloud experiments is costly due to VM rental
cost and cross-cloud outgoing bandwidth costs. Therefore, we
opted for a simulation-based approach.

A. Determining Latencies for Simulation
Since our formal modelling depends on the inter-cloud

latency matrix LR and on the client-to-cloud latency matrix L,
we need to generate appropriate and realistic latency values. In
the following subsections, we describe the methodology that
we employed to generate reliable values for L and LR.

1) Inter-Cloud Latencies (LR): As explained previously,
we have access to servers in all regions of the EC2 cloud (and
we could have access to other clouds as well); therefore, we
are able to measure latencies between machines in all pairs
of regions and generate the latency matrix LR. To do so, we
ran one t2.micro VM in each of the 10 Amazon EC2 cloud
regions, and we repeatedly measured the ping towards each
other region (100 times), which we averaged and which we
divided by 2 to obtain the single-trip time.

2) Client to Cloud Region Latencies (L): To determine
realistic latency measurements between clients and cloud re-
gions, we used the publicly available King dataset [17], which
contains latency measurements for communications between
over 1800 world-wide geo-distributed DNS servers. We setup
a VM in the 10 EC2 regions and attempted to ping each
of the 1800 DNS servers. We were able to obtain latency
measurements from 700 of them, which allowed us to build the
latency matrix L. Since the DNS servers are distributed across
the globe, we can use their latency values to estimate client-
cloud connection latencies from most places in the world.

B. System Implementation and Experimental Setup
We implemented a full simulation package in Python 3.5.1.

It has access to the measured real-world latencies stored in
the matrices L and LR, as well as the outgoing bandwidth
costs (towards the Internet and towards another EC2 region)
for each of the EC2 regions (table I). The simulator can
run simulations with any number of topics. For each topic,
the number of publishers and subscribers can be specified.
Furthermore, for each publisher, a specific publication rate
and publication size must be configured, as well as which
of the Amazon EC2 regions the publisher machine should be
geographically closest to. Finally, for any given topic T , the
upper bound in terms of maximum acceptable delivery time
(maxT) and the ratio/percentile ratioT of all delivery time
measurements that should be below maxT must be specified.
We ran several simulation experiments, as well as a runtime
analysis, which are described in the next subsections.

C. Experiment 1 - MultiPub vs. Other Approaches
The goal of this experiment is to compare MultiPub against

other approaches in a global setting. We simulated one topic
T with 100 globally-distributed publishers and subscribers,
where always 10 publishers and 10 subscribers are located
close to one of the EC2 regions. Each publisher publishes on
average once per second (message size of 1 KByte).

 120

 130

 140

 150

 160

 170

 180

 120 130 140 150 160 170 180

A
c
tu

a
l
D

e
liv

e
ry

 T
im

e
 (

m
s
)

Acceptable Delivery Time (ms)

AllRegions
MultiPub

OneRegion

(a) Delivery Time

 60

 70

 80

 90

 100

 110

 120 130 140 150 160 170 180

C
o
s
t
($

)
/
D

a
y

Acceptable Delivery Time (ms)

AllRegions
MultiPub

OneRegion

(b) Costs

 0

 2

 4

 6

 8

 10

 120 130 140 150 160 170 180

N
u
m

b
e
r

o
f
R

e
g
io

n
s

Acceptable Delivery Time (ms)

#regions
Direct

Routed

(c) # Regions

Figure 3: Comparison of MultiPub against other approaches

We compare MultiPub, where we vary the delivery time
bound maxT between 100ms and 200ms, against a) the
“All Regions (Routed Delivery)” model (see section II-B2),
which should yield the fastest results because publishers and
subscribers use the region that minimizes their delivery time,
and b) the “One Region” model (see section II-B1), which
should yield the cheapest results, because the publishers and
subscribers favour the region that minimizes costs. For all
simulations, we set the delivery time guarantee ratio to 75%.

The simulation results are shown in Figure 3. We observe in
figure 3a that the “All Region” approach is able to meet a de-
livery time bound of 140ms, while the “One Region” approach
is able to meet a delivery time bound of 168ms. The MultiPub
approach is capable of achieving the same, fast delivery time
as the “All Regions” approach when maxT ≤ 140ms. For
higher values of maxT , the actual delivery time increases,
but remains under maxT until 168ms. Starting at 168ms,
MultiPub aligns itself to the “One Region” approach. Figure
3b depicts the cloud cost calculated as if the test workload had
run for a full day on the real cloud. We observe that the fast
“All Region” approach is expensive ($107/day), whereas the
“One Region” approach is 28% cheaper ($77/day). MultiPub
selects the most cost-efficient approach that still meets the
target delivery time. For maxT ≤ 148ms costs are as high
as the “All Region” approach. Between 140ms and 168ms,
MultiPub finds a wide range of intermediate configurations
that meet the delivery time constraints but use less region
servers. This is also visualized in Figure 3c, which plots the
number of regions used by MultiPub, and whether publications
are routed between cloud servers or only direct communication
is used. Since inter-cloud links are generally faster, MultiPub
favours routed delivery even if it incurs additional forwarding
costs. Eventually, MultiPub opts for direct delivery. Finally, for
maxT ≥ 168ms, only one region is used, i.e., the cheapest
one that minimizes delivery time.

To summarize, this experiment demonstrates that MultiPub
is able to generate costs savings, which in this specific
experiment reached up to 28%, while still respecting delivery
time constraints, for a single topic and over one day.

D. Experiment 2 - Direct vs. Routed Delivery
The goal of this experiment is to show that MultiPub is

able to exploit direct and routed delivery to reduce delivery
times and/or reduce costs. We deployed one topic T with 100
publishers and 25 subscribers in Asia, and 25 subscribers in
the USA. Cloud costs are again given for a 1-day period.

7

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 70 80 90 100 110 120 130 140 150 160

A
c
tu

a
l
D

e
liv

e
ry

 T
im

e
 (

m
s
)

Maximum Acceptable Delivery Time (ms)

MultiPub-D
MultiPub-R

MultiPub

(a) Delivery Time

 30

 35

 40

 45

 50

 70 80 90 100 110 120 130 140 150 160

C
o
s
t
($

)
/
D

a
y

Maximum Acceptable Delivery Time (ms)

MultiPub-D
MultiPub-R

MultiPub

(b) Costs

Figure 4: Comparison of Direct and Routed Delivery

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300
 0

 50

 100

 150

 200

 250

A
c
tu

a
l
D

e
liv

e
ry

 T
im

e
 (

m
s
)

C
o

s
t

($
)

/
D

a
y

Maximum Acceptable Delivery Time (ms)

Delivery Time (ms)
Cost

(a) Asia

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300
 0

 50

 100

 150

 200

 250

A
c
tu

a
l
D

e
liv

e
ry

 T
im

e
 (

m
s
)

C
o

s
t

($
)

/
D

a
y

Maximum Acceptable Delivery Time (ms)

Delivery Time (ms)
Cost

(b) South America

Figure 5: Localized Pub/Sub Delivery across different regions

The delivery time guarantee ratio was set to 75%. We ran 3
separate simulations, one with standard MultiPub, one where
we allowed the controller to consider direct delivery only
(MultiPub-D), and one where the controller had to use routed
delivery (MultiPub-R). Figure 4a shows that the minimum
reachable delivery time with “MultiPub-D” is 110ms, whereas
it is 94ms with “MultiPub-R” due to the use of optimized inter-
cloud links. Therefore, for maxT ≤ 110ms, MultiPub uses
routed delivery in order to obey the delivery time constraint,
despite the costs being higher due to the extra inter-cloud
communication (see Figure 4b). For maxT values between
110ms and 138ms, MultiPub selects the best approach that
minimizes costs depending on the desired delivery time bound.
For values of maxT ≥ 138, MultiPub chooses the direct
delivery approach with only one server, located in the least
expensive region that minimizes delivery time.

E. Experiment 3 - Localized Pub/Sub Delivery
In some contexts, publishers and subscribers are local to

a region. For instance, in the context of a large-scale online
game, players might decide to play against local players. In
such a context, the straightforward approach is to deploy the
relevant topics only in the local geographical region where
the clients are located. However, this setting, while yielding
the fastest delivery, is not necessarily the cheapest. This
experiment demonstrates that while MultiPub is designed with
global-scale publish/subscribe systems in mind, it can also be
useful in regional-scale scenarios to optimize costs. We ran
the same experiment for two different regions with relatively
expensive costs: Asia (EC2 region ap-northeast-1) and South
America (EC2 region sa-east-1). For each experiment on one
of the regions R, 100 publishers and 100 subscribers were
selected so that they were closest from a latency point of view
to region R. The delivery time guarantee ratio was set to 95%.

 0

 20

 40

 60

 80

 100

 120

 20 30 40 50 60 70 80 90 100

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Number of Publishers and Subscribers

Pubs+Subs

(a) Publishers and Subscribers

 0

 20

 40

 60

 80

 100

 120

 2 3 4 5 6 7 8 9 10

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Number of Regions

Regions

(b) Number of Regions

Figure 6: Runtime Analysis

In the Asia experiment (figure 5a), delivery times of 35ms
can be achieved using the cloud region in Tokyo, but that is
associated with a high cost. With a relaxed delivery constraint
of 80ms or more, MultiPub discovers cheaper solutions that
use different clouds, until finally, for delivery time bounds of
145ms and above, MultiPub finds a configuration that uses
a single European server to serve all clients in Asia. As
a result, MultiPub significantly lowers the costs, achieving
savings of 36% ($74 / day instead of $120/day). In the South
America experiment (figure 5b), the cost savings achieved by
MultiPub are even more significant, since outgoing bandwidth
costs in this EC2 region are the most expensive. MultiPub
can meet a delivery constraint maxT of 60ms for 95% of the
publication messages at a very high cost ($210 / day). For
values of maxT ≥ 190, MultiPub determines that an alternate
configuration with servers in North America (Virginia) is
suitable. In that case, costs for one day descend to $74,
representing a saving of 65%.

F. Experiment 4 - Runtime Analysis

Determining the optimal solution is, as mentioned before,
exponential with the number of servers. Furthermore, it is
linear with the number of messages that have to be considered
as we have to sort the messages in order to determine the
delivery percentile. In turn, the number of messages increases
linear with the number of subscribers on one hand, and, if
all publishers send at the same rate, linear with the number of
publishers. A first experiment looks at runtimes for a 10-region
system when both the number of publishers and subscribers
increase to up to 100 (each publisher publishing once every
second), showing that at 100 subscribers and 100 publishers
it takes a bit less than two minutes to determine the optimal
configuration (figure 6a). Similar results are observed when
we fix the number of subscribers to 10 and increase the
number of publishers to 1000, or when we fix the number
of publishers to 10 and increase the number of subscribers
to 1000 (graphs omitted due to space constraints). Figure 6b
shows the exponential influence of the number of regions by
depicting the runtime of the solver for 100 subscribers and
publishers with increasing number of regions. With a setting
of 5 regions, it took the solver only 3 seconds to find the
optimal configuration, that is, around 95% less time than with
10 regions. Which means, that considering only five regions,
configurations with 10 publishers and 35,000 subscribers could
be determined in less than two minutes.

In summary, these performance measurements confirm that
the optimization problem that MultiPub needs to solve can
easily be tackled for realistic settings. Already our unopti-

8

mized, brute-force Python implementation can handle a large
number of users, which is largely sufficient to adjust to
load changes due to the arrival of new publishers and/or
subscribers. To support bigger settings, one could use a more
optimized implementation. Also, different topics can be solved
in parallel, as they are independent. To support extra-large
scale settings, a defendable way to reduce solve time is to only
consider a subset of cloud regions, which as we have seen, has
an exponential impact on the search space. Simple pruning can
remove expensive regions with no or very few subscribers, for
instance. Also, proportional bundling can be used, grouping
clients that are close to each other and replacing them with a
virtual client in order to reduce the scale of the problem.

VI. RELATED WORK

To the best of our knowledge, MultiPub is the first attempt
at proposing a pub/sub system that uses an optimization
approach considering both delivery times and cloud costs
to determine cost-effective and performant deployments in a
global-scale setting. Cloud costs have been considered in [24],
in which the authors propose a model for efficient resource
allocation in topic-based pub/sub systems, in order to reduce
cloud-related costs and satisfy subscribers’ interest. Similar to
them, MultiPub also solves an optimization problem, but our
constraints consider message delivery time, and we consider a
global-scale deployment of our service in many cloud regions.

PubSubCoord [7] provides a multi-layered, broker-based
cloud coordination system for WAN-scale pub/sub systems. In-
diQoS [13] proposes QoS guarantees in broker-based publish-
subscribe systems. However, it requires a QoS data network,
which makes it impractical for Internet and/or cloud deploy-
ments. In [18], the authors propose DCRD, a routing algorithm
for broker-based topic-based pub/sub systems which selects
the most optimal path towards recipients. However, its multi-
hop nature can lead to increased delivery times, is not tailored
for cloud deployments, and does not take delivery costs into
consideration. In [19], the authors propose a scalable pub/sub-
based event dissemination platform built on the XMPP proto-
col. Again, it does not specifically optimize delivery time and
does not discuss the issue of optimizing delivery costs. While
[23] is not about minimizing costs, the authors nevertheless
propose a model that aims at maximizing topic-based pub/sub
subscribers’ satisfaction in resource-constrained environments.

[10] (survey) discusses the different approaches at providing
QoS in the context of wide-scale pub/sub systems. In some
systems, an expiration time can be set for publications and
all expired publications are rejected by subscribers [6]. The
Data Distribution Service (DDS) from the OMG group [4]
proposes the specification of a rich software architecture for
QoS-constrained data delivery schemes, with an emphasis on
pub/sub applications. However, it is not tailored for the cloud
and it does not provide or specify an implementation, hence
performance depends on specific standard implementations.

Besides topic-based pub/sub, content-based is another well-
known pub/sub flavor [22], where subscriptions are done over
predicates computed on the publications themselves, which
can offer more flexibility at the expense of higher computation
costs. Some cloud content-based pub/sub services have been
proposed such as [21], [8]. Graph-based pub/sub is yet a
different paradigm in which interests are represented as graph

subscriptions [11]. We also mention that some entreprises also
provide large-scale pub/sub services in the cloud [5], [2], [1].

VII. CONCLUSION

We presented MultiPub, a cost-minimizing topic-based
pub/sub cloud middleware for latency-constrained applications
with clients that are potentially distributed all over the globe
that require strict delivery time bounds. As future work, we
plan on proposing heuristic-based clustering approaches to
support even larger-scale systems. We also plan to extend our
model to support content-based pub/sub systems. Since these
systems need more CPU resources, such an extension would
also need to take VM usage / CPU costs into consideration.

REFERENCES

[1] Amazon SNS. http://aws.amazon.com/fr/sns/ (2014)
[2] Google Cloud Messaging. https://developer.android.com/

google/gcm/index.html (2014)
[3] Amazon Elastic Compute Cloud. https://aws.amazon.com/ec2/ (2016)
[4] Data Distribution Service 1.4. http://www.omg.org/spec/DDS/1.4/ (2016)
[5] Google Cloud Pub/Sub. https://cloud.google.com/pubsub/ (2016)
[6] Java Message Service Specifications v1.1 (2016)
[7] An, K., Gokhale, A., Tambe, S., Kuroda, T.: Wide area network-

scale discovery and data dissemination in data-centric publish/subscribe
systems. pp. 6:1–6:2. Middleware Posters and Demos ’15, ACM (2015)

[8] Barazzutti, R., Heinze, T., Martin, A., Onica, E., Felber, P., Fetzer, C.,
Jerzak, Z., Pasin, M., Riviere, E.: Elastic scaling of a high-throughput
content-based publish/subscribe engine. In: ICDCS. pp. 567–576 (2014)

[9] Beigbeder, T., Coughlan, R., Lusher, C., Plunkett, J., Agu, E., Claypool,
M.: The effects of loss and latency on user performance in unreal
tournament 2003 R©. pp. 144–151. NetGames ’04, ACM (2004)

[10] Bellavista, P., Corradi, A., Reale, A.: Quality of service in wide scale
publish-subscribe systems. IEEE Communications Surveys Tutorials
16(3), 1591–1616 (Third 2014)

[11] Cañas, C., Pacheco, E., Kemme, B., Kienzle, J., Jacobsen, H.A.: Graps:
A graph publish/subscribe middleware. pp. 1–12. Middleware ’15, ACM

[12] Cañas, C., Zhang, K., Kemme, B., Kienzle, J., Jacobsen, H.A.: Pub-
lish/subscribe network designs for multiplayer games. In: Middleware
2014. pp. 241–252 (2014)

[13] Carvalho, N., Araujo, F., Rodrigues, L.: Scalable qos-based event routing
in publish-subscribe systems. In: Fourth IEEE International Symposium
on Network Computing and Applications. pp. 101–108 (July 2005)

[14] Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many
faces of publish/subscribe. ACM Comput. Surv. 35(2), 114–131 (2003)

[15] Gascon-Samson, J., Garcia, F.P., Kemme, B., Kienzle, J.: Dynamoth: A
scalable pub/sub middleware for latency-constrained applications in the
cloud. In: ICDCS 2015. pp. 486–496 (June 2015)

[16] Gascon-Samson, J., Kienzle, J., Kemme, B.: Dynfilter: Limiting band-
width of online games using adaptive pub/sub message filtering. In: Net-
work and Systems Support for Games (NetGames), 2015 International
Workshop on. pp. 1–6 (Dec 2015)

[17] Gummadi, K.P., Saroiu, S., Gribble, S.D.: King: Estimating latency
between arbitrary internet end hosts. In: ACM SIGCOMM Workshop
on Internet Measurment (IMW). pp. 5–18 (2002)

[18] Guo, S., Karenos, K., Kim, M., Lei, H., Reason, J.: Delay-cognizant
reliable delivery for publish/subscribe overlay networks. In: ICDCS
2011. pp. 403–412 (June 2011)

[19] Hong, R., Shin, S., Yoon, Y., Laxmankatole, A., Woo, H.: Global-
scale event dissemination on mobile social channeling platform. In:
MobileCloud 2014. pp. 210–219 (April 2014)

[20] Kienzle, J., Verbrugge, C., Kemme, B., Denault, A., Hawker, M.:
Mammoth: a massively multiplayer game research framework. In: Foun-
dations of Digital Games (FDG). pp. 308–315 (2009)

[21] Li, M., Ye, F., Kim, M., Chen, H., Lei, H.: A scalable and elastic
publish/subscribe service. In: IPDPS. pp. 1254–1265 (2011)

[22] Rosenblum, D.S., Wolf, A.L.: A design framework for internet-scale
event observation and notification. In: ESEC. pp. 344–360 (1997)

[23] Setty, V., Kreitz, G., Urdaneta, G., Vitenberg, R., van Steen, M.:
Maximizing the number of satisfied subscribers in pub/sub systems
under capacity constraints. In: IEEE INFOCOM 2014. pp. 2580–2588

[24] Setty, V., Vitenberg, R., Kreitz, G., Urdaneta, G., van Steen, M.: Cost-
effective resource allocation for deploying pub/sub on cloud. In: ICDCS
2014. pp. 555–566

