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Abstract—Advances in Internet of Things (IoT) give rise to a
variety of latency-sensitive, closed-loop applications that reside at
the edge. These applications often involve a large number of sen-
sors that generate volumes of data, which must be processed and
disseminated in real-time to potentially a large number of entities
for actuation, thereby forming a closed-loop, publish-process-
subscribe system. To meet the response time requirements of
such applications, this paper presents techniques to realize a
scalable, fog/edge-based broker architecture that balances data
publication and processing loads for topic-based, publish-process-
subscribe systems operating at the edge, and assures the Quality-
of-Service (QoS), specified as the 90th percentile latency, on a
per-topic basis. The key contributions include: (a) a sensitivity
analysis to understand the impact of features such as publishing
rate, number of subscribers, per-sample processing interval
and background load on a topic’s performance; (b) a latency
prediction model for a set of co-located topics, which is then
used for the latency-aware placement of topics on brokers; and
(c) an optimization problem formulation for k-topic co-location to
minimize the number of brokers while meeting each topic’s QoS
requirement. Here, k denotes the maximum number of topics that
can be placed on a broker. We show that the problem is NP-hard
for k ≥ 3 and present three load balancing heuristics. Empirical
results are presented to validate the latency prediction model and
to evaluate the performance of the proposed heuristics.

Index Terms—Fog/Edge computing; Topic-based publish/sub-
scribe; Brokers; Real-time; Scalability

I. INTRODUCTION

The Internet of Things (IoT) is a paradigm in which a
plethora of devices across many domains are interconnected
to provide and exchange data. Over the last few years, the
IoT landscape has grown tremendously, with some studies
estimating the number of connected devices to be in the
range of tens of billions [24]. In many IoT applications, large
amounts of data are produced by sensors deployed at scale, and
rapidly consumed in order to provide fast decision-making.
This is notably the case in many Smart City applications [46]
in which data acquired from many sensors must be rapidly
processed in an online/streaming manner to provide low-
latency results for closed-loop actuation.

For example, SmartDriver [18] is a real-time personalized
recommendation service for improving driving efficiency and
road safety that is deployed in the city of Seville in Spain.
Here, each driver sends their biometric information, such
as heart-rate and vehicle information, every 10 seconds to

the SmartDriver server. SmartDriver uses this information to
monitor each driver’s stress level and to provide personal-
ized recommendations for safe and fuel-efficient driving. In
addition to sending their own vehicle information, drivers
also subscribe to receive information about all nearby drivers
(within 100 meters) to assess traffic conditions. Given the time
and location sensitivity of the provided information, and the
prospect of low-latency 5G networks [33], IoT applications
such as SmartDriver often impose strict response time require-
ments [27]. Further, in a medium-sized or a large city, there
can be tens of thousands of commuting vehicles at rush hour.
Therefore, a scalable and low-latency solution for both data
dissemination and in-network processing is needed for IoT
applications.

The Publish/Subscribe (pub/sub) [16] communication pat-
tern is considered highly suitable for the data dissemination
needs of IoT applications [26], since it provides scalable,
asynchronous and anonymous many-to-many communication
between data producers (publishers) and data consumers (sub-
scribers). In pub/sub systems, subscribers specify their inter-
ests in receiving data in the form of subscriptions. Publishers
transmit publication messages that are disseminated by the
underlying system to the relevant subscribers. The literature
distinguishes between many flavors of pub/sub; the most
prevalent being topic-based pub/sub, which is the subject of
this paper. In topic-based pub/sub, subscriptions are expressed
over topics, which can be used to model communication chan-
nels. Topics are specified by topic names, subscribers declare
their subscriptions to specific topic names, and publishers tag
their messages with topic names. The topic-based pub/sub
system dispatches all the messages published on a topic to
all interested subscribers.

In addition to data dissemination, IoT applications also
require real-time processing of streaming data. Traditionally,
data produced at the network edge is sent to the cloud
for processing. However, this approach can consume very
high bandwidth and incur unpredictable and large latencies.
Therefore, cloud-based processing and dissemination is not the
best choice for latency-critical IoT applications [47]. Recently,
edge [20], [40], [41], fog [8] and mobile-cloud computing [17]
models have been proposed to address these concerns and
support execution of computations near the source of data



on low-cost edge devices and small-scale datacenters called
cloudlets [41].

Edge computing, combined with the pub/sub communi-
cation model, which together is referred to as the publish-
process-subscribe [31] paradigm, provides a promising ap-
proach for enabling low-latency data distribution and process-
ing for IoT systems. In this model, computations take place
on published streams of data directly at the pub/sub brokers
deployed near the edge. This approach has several advantages:
(1) results can be disseminated to local subscribers quickly; (2)
only aggregated results are sent to the cloud backend to reduce
bandwidth consumption; and (3) data can be anonymized
before being sent to the cloud for privacy.

Although pub/sub brokers that perform streaming analytics
are increasingly being used to enable latency-critical IoT
applications, existing solutions seldom provide any Quality-
of-Service (QoS) assurance on latencies experienced by the
system. Providing some measure of response time assurance is
imperative for the practical utility of many IoT applications. To
address these concerns, in this paper, we present a solution to
provide QoS specified as the desired per-topic 90th percentile
latency for a publish-process-subscribe system. Per-topic 90th
percentile latency QoS implies that 90% of the messages
received by all subscribers for a topic will have latencies
below the specified QoS value. To ensure more reliable system
performance, we use QoS specified as the 90th percentile
latency as opposed to average latency [1]. Our solution first
learns a latency prediction model of the publish-process-
subscribe broker, and subsequently uses the learned model to
determine the number of edge-based pub/sub brokers needed,
as well as the placement of topics on these brokers, so that
the QoS requirement is met, while making efficient use of the
constrained system resources.

In this regard, this paper makes the following key contribu-
tions:
• Sensitivity analysis: We present a sensitivity analysis

of the impact of different pub/sub features including
number of subscribers, number of publishers, publishing
rate and per-sample processing interval, on a topic’s 90th
percentile latency, both in an isolated case where no
other topics are hosted at the broker and in a co-located
case where other topics are simultaneously hosted at the
broker.

• Latency prediction model: We present a model for
predicting a topic’s 90th percentile latency based on its
publishing rate, per-sample processing interval, as well
as a characterization of the background load imposed
by other co-located topics on a broker. Neural network
regression is used to learn a separate model for hosting
a different number of co-located topics on a broker up
to a maximum degree of co-location k. The learned
models are demonstrated to have ∼97% accuracy and
experimental results show that only up to ∼10% of the
messages in the system are not able to meet the desired
latency QoS as a result of prediction error and subsequent
incorrect topic placement.

• Topic co-location heuristics: We formulate a k-Topic Co-
location Problem (k-TCP) of finding a resource-efficient
co-location scheme for a collection of topics on brokers
such that their desired QoS in terms of 90th percentile
latency is not violated. Here, the degree of co-location
k specifies the maximum number of topics that can be
hosted by any broker. We show that k-TCP is NP-hard
for k ≥ 3 and present three heuristics that use the latency
prediction model for placement of topics on brokers.
The performance of these heuristics is evaluated and
compared through extensive experiments.

The rest of this paper is organized as follows: Section II
presents related work and compares our solution to some
existing pub/sub systems. Section III gives a formal statement
of the problem we are studying. Section IV shows the results
of a sensitivity analysis and the learned latency prediction
model. Section V presents the complexity analysis of the
topic co-location problem and the proposed heuristic-based
solutions. Section VI presents experimental results to validate
our solutions. Finally, Section VII offers concluding remarks
and describes future work.

II. RELATED WORK

Based on the expressiveness of subscriptions supported, a
pub/sub system can be: (1) Content-based [5], where sub-
scribers specify arbitrary boolean functions on the content
of the messages; (2) Attribute-based [32], where subscribers
specify predicates over attribute values associated with the
messages; or (3) Topic-based [22], where messages are tagged
with a topic name and subscribers that are interested in a
specific topic receive all messages associated with that topic.

Matching published data with subscriptions for data dissem-
ination occurs over an overlay network of pub/sub brokers.
Brokers in a pub/sub system may be organized into a tree-
based overlay [12], cluster-based overlay [10], structured/un-
structured peer-to-peer overlay [3], [44] or cloud-based over-
lay [22], [32]. Tree-based, cluster-based and peer-to-peer over-
lays incur multi-hop routing latencies, lack reconfiguration
flexiblity and require maintenance of costly state information.
Increasingly, single-hop, topic-based pub/sub systems, such as
MQTT (http://mqtt.org/), ActiveMQ (http://activemq.apache.
org/), Amazon IoT (https://aws.amazon.com/iot/), are being
used for developing IoT applications. These systems comprise
a single flat layer of pub/sub brokers that are generally
deployed in the cloud. Therefore, in this paper we focus on
topic-based, single-hop, pub/sub systems similar to MQTT.

Many well-known and commercially-available, topic-based
pub/sub systems, such as MQTT, Redis (https://redis.io/),
Kafka (https://kafka.apache.org/) and ActiveMQ have been
used to build IoT applications. For example, the SmartSan-
tander [39] IoT testbed uses ActiveMQ to distribute a variety
of sensor data. MQTT is used to create a smart parking
application [30] and the SmartDriver application described
previously uses Kafka.

Very few pub/sub systems provide QoS guarantees [6], [11]
on latency, which is much desirable for supporting latency



critical IoT applications. IndiQoS [11] reserves network level
resources over a peer-to-peer overlay of brokers to ensure QoS
of data delivery. However, it is not always practical to make
network-level resource reservations. Harmony [45] is a peer-
to-peer pub/sub system which continuously monitors link qual-
ity and adapts routing paths for low-latency data dissemina-
tion. Harmony can also make use of priority-based scheduling
of messages if the underlying network supports it. DCRD [25]
dynamically switches among next-hop downstream nodes for
reliable and time-bound data delivery. Brokers in DCRD
maintain a sorted list of next-hop nodes for each subscriber
on the basis of expected delay and reliability of delivery via
the next-hop node. Although these solutions support QoS for
latency of data delivery, they are designed for peer-to-peer,
multi-hop networks and are not directly applicable for single-
hop, topic-based pub/sub systems like MQTT, ActiveMQ, etc.
Moreover, these solutions primarily focus on re-routing paths
for data delivery in response to changes in network link
characteristics. They do not consider the impact of existing
broker load on latency.

With the adoption of edge computing concepts of processing
near the source of data, many pub/sub sytems have emerged
that implement the publish-process-subscribe [13], [31] pattern
and additionally support computation at the pub/sub bro-
kers. Latencies in publish-process-subscribe systems will be
affected significantly by processing delays at the broker in
addition to network link characteristics. Therefore, managing
the load at pub/sub brokers is important for ensuring ac-
ceptable performance. Typically, load in topic-based pub/sub
systems is managed by placing the topics on multiple brokers
and distributing the connected endpoints across these brokers.
Kafka supports manual rebalancing of topic load, while Dy-
namoth [22] performs this rebalancing dynamically when the
empirically set network thresholds are exceeded. However,
both Kafka and Dynamoth do not perform load-balancing in
a latency aware manner for QoS assurance. MultiPub [23]
finds an optimal placement of topics across geographically
distributed datacenters for ensuring per-topic 90th percentile
latency of data delivery, but it only considers inter-datacenter
network latencies and assumes that each datacenter has a local
load balancing algorithm. On the contrary, FogMq [2] uses a
distributed flocking algorithm to migrate the entire pub/sub
broker between edge sites to ensure bounded tail latency of
computation.

To addresss the need to balance loads at publish-process-
subscribe brokers for providing latency QoS of data delivery,
our solution learns a latency model for pub/sub broker load and
uses the learned model for distributing the topic load across
brokers such that data delivery QoS is provided in a resource
efficient manner.

We use a data-driven approach instead of closed-form,
analytical solutions, to model the impact of broker load on
a topic’s latency. Closed-form, analytical solutions, such as
queueing models have been used extensively for performance
modeling [4] [9] [36]. However, we use a data-driven approach
since simple queueing models do not incorporate the impact

of interference by other co-located topics on a topic’s latency
and typically assume Poisson arrivals. In IoT deployments,
it is more likely that sensors publish information at constant
rate. Practical use of queueing models requires us to explicitly
measure the processing capacity of the broker per topic.
Although it can be indirectly estimated by measuring the
number of queued samples per topic, many commercial off-
the-shelf pub/sub libraries do not expose this metric. To the
best of our knowledge, a machine-learning based approach
for modeling the performance of publish-process-subscribe
systems has not been presented before.

III. PROBLEM STATEMENT

In this section, we first describe a use case to motivate
the need for latency-bounded, edge-based publish-process-
subscribe systems (Section III-A). We then present the system
model (Section III-B) and assumptions made (Section III-C).
Finally, we provide the formal statement of k-Topic Co-
location (k-TCP) optimization problem that meets the QoS re-
quirements while making efficient use of the broker resources
(Section III-D).

A. Motivational Use Case

We use the DEBS Grand Challenge dataset [28] on New
York taxi trips as our motivational use case — a near real-
time, city-wide taxi navigation and dispatch service. The
service divides New York into 500m×500m regions and taxis
within each region send their location updates on its region’s
gps topic. Additionally, taxis also subscribe to its region’s
update topic to receive processed information such as most
profitable regions of operation, traffic and dispatch informa-
tion. All topics are hosted by a publish-process-subscribe
system running on brokers near the edge, called edge brokers,
inside a small-scale datacenter. The RIoTBench paper [43]
has benchmarked some stream processing pipelines built for
the New York taxi dataset, such as ETL (Extract Transform
Load), prediction, model training and statistical aggregation.
While ETL and prediction pipelines take 10-40ms, statistical
summarization and model training take ∼50 seconds. Model
training and statistical summarization are good examples of
latency-insensitive processing that can be offloaded to a more
resourceful cloud backend, while ETL and prediction can
be performed at the edge brokers to provide low-latency
inference.

Given the time-sensitive nature of GPS position, traffic and
dispatching information [19], we consider the response time
requirement for the application to be sub-second, i.e., pre-
processing of data on the gps topic should happen within one
second and the updates published on the update topic should
also be disseminated to all taxis within one second.

B. System Model and Notations

We now introduce the system model and notation used in the
paper. Consider a system where the cloud provider operates
a set of homogeneous server brokers that are deployed on
fog/edge resources. Let T = {t1, t2, · · · , tn} be a collection of



n pub/sub topics that need to be allocated on the brokers. Each
topic ti ∈ T is characterized by several parameters, including
the number of publishers, overall publishing rate, per-sample
processing interval in the broker, number of subscribers, etc.
Since each topic may only occupy a fraction of resources
in a broker – the amount of which will be determined by
a combination of its parameters described above – multiple
topics can be co-located on the same broker for better resource
utilization. Co-located topics, however, affect each other’s
performance [15], [34], thus increasing their end-to-end delays
and hence 90th percentile latencies. In this paper, we allow a
maximum of k topics to be co-located, where k ≥ 1 is a
constant parameter that represents the degree of co-location.
The value of k can be determined empirically by examining
the overhead of managing multiple co-located topics as well as
the severity of interference in terms of the latency degradation.

Let τ denote the desired 90th percentile latency that should
not be exceeded by all topics. Given τ and k, to solve the
proposed k-Topic Co-location (k-TCP) problem, we consider
the following two sub-problems:
(1) Design a latency prediction model for the 90th percentile

latencies of up to k co-located topics based on their input
parameters.

(2) Find a topic co-location scheme to minimize the number
of brokers used, which is needed due to the resource-
constrained nature of the edge yet ensuring that all topics
satisfy the desired 90th percentile latency τ .

C. Assumptions

Our system model makes the following assumptions:
(1) We only consider the impact of a broker load’s on a

topic’s latency. In practice, a topic’s latency will also
be influenced by the fluctuating network conditions. We
assume constant network latency and bandwidth.

(2) For simplicity of discourse, we assume that all topics have
the same latency QoS requirement τ , although our system
can support differentiated per-topic QoS requirements.

(3) We assume that the per-sample processing performed at
the broker is CPU-bound.

(4) We assume that all edge brokers are homogeneous, i.e.,
they have the same hardware specification.

D. k-Topic Co-location Problem (k-TCP)

We present a formal definition of the topic co-location
problem. For a collection T = {t1, t2, . . . , tn} of n topics,
a degree of co-location k, and a latency bound τ , a topic
co-location scheme S : T → B assigns the topics to a set
B = {b1, b2, . . . } of edge brokers. The goal is to minimize
the number |B| of edge brokers used while ensuring that each
topic satisfies the desired latency τ .

Under a particular co-location scheme, let yj to be a binary
variable that indicates whether broker bj is used, i.e.,

yj =

{
1 if broker bj is used
0 otherwise

and let xij be a binary variable that indicates the assignments
of topics to brokers, i.e.,

xij =

{
1 if topic ti is assigned to broker bj
0 otherwise

Also, for each topic ti ∈ T , let Ti ⊆ T denote its set of
co-located topics (including ti itself) on the same broker, i.e.,
Ti = {ti′ ∈ T |xij = xi′j = 1}, and let `i(Ti) denote its
90th percentile latency, which can be computed by the latency
predictive model (Section IV). If topic ti is assigned to a server
alone without other co-located topics, we simply use `i to
denote its 90th percentile latency. The following describes a
natural property on the latency model.

Property 1. (a) `i ≤ τ for all ti ∈ T ; (b) `i(T
′′

i ) ≤ `i(T
′

i ) if
T

′′

i ⊆ T
′

i for all ti ∈ T .

In particular, the property states that: (a) each topic always
satisfies the latency requirement when assigned alone to a
broker1; and (b) removing a topic from a set of co-located
topics on a broker will not increase the latency for any of the
remaining topics.

Now, we formulate the k-Topic Co-location Problem (k-
TCP) as the following integer linear program (ILP):

Minimize |B| =
∑
j

yj

Subject to
∑
j

xij = 1, ∀ti ∈ T (1)∑
i

xij ≤ k, ∀bj ∈ B (2)

`i(Ti) ≤ τ, ∀ti ∈ T (3)
xij , yj ∈ {0, 1}, ∀ti ∈ T, ∀bj ∈ B (4)

In the above formulation, Constraint (1) requires each topic
to be assigned to exactly one broker, Constraint (2) allows no
more than k co-located topics on each broker, Constraint (3)
ensures the latency satisfiability for all topics, and Constraint
(4) requires the decision variables to be binary. Section V
shows the complexity of k-TCP and presents several heuristic
solutions.

IV. LATENCY PREDICTION MODEL AND ITS SENSITIVITY
ANALYSIS

Solutions to the proposed k-TCP problem rely on an accu-
rate understanding of the 90th percentile end-to-end latency
values per topic under different topic co-location scenarios.
To that end, we build a latency prediction model to determine
the latency satisfiability of any set of topics to be placed
on a broker. However, building such a prediction model first
requires a critical understanding of the impact of pub/sub fea-
tures and topic co-location on per-topic latencies. Therefore,
we first conduct a set of sensitivity analysis experiments to

1Otherwise, the topic must be split into two or more topics, e.g., by splitting
publishing rate [22] for any solution to be feasible. The design of topic
splitting policies is out of the scope of this paper.



(a) Impact of subscription size (b) Impact of topic co-location (one-to-many)

(c) Impact of publishing rate (d) Impact of topic co-location (many-to-one)

Fig. 1: Sensitivity analysis for latency modeling

study the impact of several pub/sub features, such as number
of subscribers or subscription size, publishing rate, per-sample
processing interval and background load on a topic’s perfor-
mance. This helps us to identify the dominant pub/sub features
that should be used to build the latency prediction model.

Accordingly, we first describe our pub/sub system and the
experimental testbed used to conduct the sensitivity analysis
experiments in Section IV-A, following which Section IV-B
presents the sensitivity analysis results. Section IV-D describes
our latency prediction model, followed by discussions about
its limitations in Section IV-E.

A. Experimental Setup

We implemented our pub/sub system using the Java lan-
guage binding of the ZMQ (http://zeromq.org/) sockets library.
Our system architecture is similar to Kafka, where topics
are hosted on a flat layer of pub/sub brokers managed by
Zookeeper (https://zookeeper.apache.org/), which is a central-
ized service for distributed coordination and state maintenance.
Publishers and subscribers connect to the broker that hosts
their topics of interest to send and receive data, respectively.
We have used the matrix-product CPU stressor provided by the
stress-ng (http://kernel.ubuntu.com/∼cking/stress-ng/) tool to
emulate variable intervals of per-sample processing performed
at the broker in accordance with the publish-process-subscribe
paradigm. All experiments are performed for a broker node
hardware with four 2.5GHz Intel Xeon E5420 cores, 4GB
RAM and 1Gb/sec network capacity. Separate machines were

used for hosting the publisher and subscriber endpoints. Net-
work Time Protocol (NTP)2 was used for time synchronization
of all machines. Publishers tag their messages with a time-
stamp and subscribers upon reception of the message use this
time-stamp to compute the end-to-end latency of data delivery.

B. Sensitivity Analysis

In our motivational use-case described in Section III-A, IoT
workload is either of type one-to-many or of type many-to-
one. In the one-to-many type, a single/few publishers send
processed data to a large number of subscribers for actuation.
For example, in our motivational use case, taxis receive
information about the most profitable region of operation on
the update topic. In the many-to-one type, a large number of
publishers send their data to a few subscribers for processing.
For example, all taxis in a region send their gps coordinates
on the gps topic. The publishing rate in the one-to-many case
is expected to be low, while the cumulative publishing rate for
the many-to-one case is expected to be much higher.

We first study the impact of number of subscribers on a
topic’s performance for one-to-many type of data dissem-
ination (recall that a topic’s performance is characterized
by the end-to-end 90th percentile latency experienced by its
subscribers). Figure 1a shows the impact on latency when
we increase the number of subscribers connected to a topic
hosted at a broker in isolation (i.e., there are no other topics

2http://www.ntp.org/



hosted along with this topic at the broker) for different values
of per-sample processing interval. As this is a one-to-many
type of workload, we connect a single publisher, which sends
messages with a payload size of 4KB at a low rate of 1
message/second. We observe that although latency increases
with increasing number of subscribers, the impact on latency
is very small, especially if sub-second delivery bounds are
considered, such as in our taxi use case. From our analysis
of the New York taxi data-set over a five-day period, the
maximum number of taxis in a region was found to be
240. Figure 1a shows that 240 subscribers/taxis can easily be
sustained without incurring a significant performance penalty.

However, a topic will seldom be hosted in isolation at
the broker given the resource-constrained nature of edge-
based systems. Therefore, we also study how co-located topics
can impact the performance of a topic of type one-to-many.
We refer to the topic under consideration as the foreground
topic, while the other co-located topics are referred to as
the background topics. Figure 1b shows how the latency of
the foreground topic with 200 connected subscribers and per-
sample processing of 50ms is affected as we increase the
number of background topics. Here, each background topic
is of type many-to-one with 10 connected publishers- each
publishing at the rate of one message/second, one connected
subscriber and 50ms per-sample processing interval. The num-
ber of background topics is increased until CPU utilization at
the broker saturates. We see that the latency of the foreground
topic increases significantly with increasing load at the broker,
but it is still well below the sub-second latency bound despite
broker CPU saturation.

We perform similar sensitivity analysis experiments for the
many-to-one scenario. Figure 1c shows how an isolated topic’s
latency is impacted as publishing rate or number of connected
publishers increases for different per-sample processing in-
tervals. Here, each topic has one connected subscriber and
each publisher publishes at the rate of one message/second.
We observe that a topic’s latency increases linearly up to a
threshold rate after which the increase in latency becomes
exponentially large. Beyond the threshold publishing rate,
the processing capacity of the broker is exceeded by the
incoming rate of messages, which results in large queuing
delay at the broker and therefore, an exponential increase
in the observed latency [42]. The threshold rate for a given
per-sample processing interval decreases due to the impact of
background load imposed by other co-located topics as shown
in Figure 1d. This shows that the threshold rate for a topic
with per-sample processing interval of 20ms reduces from
38 messages/second in the isolated case to 15 messages/sec
when co-located with 7 other background topics and to 8
messages/second when co-located with 11 other background
topics. In these experiments, the background topics were of
type many-to-one, with randomly chosen publishing rates and
per-sample processing intervals.

C. Key Insights from Sensitivity Analysis

The sensitivity analysis results show that a topic’s latency in
a publish-process-subscribe system increases with increasing
subscription size, publishing rate, per-sample processing inter-
val and background load. Depending on the broker hardware
capacity, the measured values, such as, latency, threshold
rate of publication, etc. may be different. However, observed
behaviors will remain the same.

The sensitivity analysis experiments show that number of
subscribers, publishing rate, per-sample processing interval
and background load all impact a topic’s latency. For sub-
second latency requirements, the results show that even for
200 connected subscribers, the latency for a topic is not
significantly impacted despite the broker being saturated. For
applications where the number of connected subscribers per
topic is much larger than 200, a topic can be replicated and
the number of connected subscribers can be distributed [22]
to ensure that the latency QoS is met. Topic partitioning and
replication is beyond the scope of this paper and we assume
that a topic can be safely placed at a broker in isolation. For
sub-second latency bounds, as the number of subscribers does
not significantly impact latency, we did not include it in the
latency prediction model. It is important to note, however, that
the number of subscribers may need to modeled for systems
with stricter latency requirements. Figure 1b shows a 147%
increase in latency from 72ms to 180ms as the background
load increases for the foreground one-to-many topic with 200
connected subscribers.

D. Latency Prediction Model

The sensitivity analysis experiments show that a topic’s per-
sample processing interval and publishing rate prominently
impact its latency. Hence, we have considered these two
pub/sub features and features derived from them for learning
our latency prediction model. More concretely, we used six
input features for learning the model, of which the first three
characterize the foreground topic and the remaining three
characterize the background load.

These input features are described below, where tf denotes
the foreground topic and TB denotes the set of background
topics at a broker:
• pf , i.e., per-sample processing interval of tf ;
• rf , i.e., publishing rate of tf ;
• df , i.e., foreground load which is the product of per-

sample processing interval pf and publishing rate rf ;
•
∑

tb∈TB
pb, i.e., the sum of per-sample processing inter-

vals of all background topics;
•
∑

tb∈TB
rb, i.e., the sum of publishing rates of all back-

ground topics;
•
∑

tb∈TB
db, i.e., the sum of load (product of per-sample

processing interval and publishing rate) of all background
topics.

For a topic in isolation, the background load is zero.
Therefore, to learn the latency model for a topic in isolation,
we have only considered the per-sample processing interval p



and publishing rate r of the topic as input features. We found
that polynomial regression of degree 4 accurately models the
latency curve for a topic in isolation. We describe the isolated
topic model accuracy results in more detail in Section VI-B.

However, for two or more co-located topics, i.e., k ≥ 2,
we found that simple regression techniques could no longer
capture the complex, non-linear impact of the background
topics’ loads on a foreground topic’s latency. Since neural
networks generally perform well in capturing non-linear func-
tions of a problem [14], we use it to learn latency models
for k ≥ 2. Neural networks comprise multiple layers, namely,
an input layer, one or more intermediate layers called hidden
layers and an output layer. Each layer comprises nodes called
neurons which are linked to neurons in another layer by
weighted connections. The input layer simply feeds the input
features of the training data to the network via these weighted
connections. Neurons of the hidden and output layer sum the
incoming weighted input signals, apply a bias term and an
activation function to produce the output for the next layer
(in case of a hidden layer) or the output of the network (in
case of the output layer). Hidden layers and/or non-linear
activation functions are used for modeling the non-linearity
of the problem.

The architecture of a neural network, specifically the num-
ber of hidden layers, number of neurons in each hidden layer
and the regularization factor, greatly impact the performance
of the model. If the chosen architecture is too complex, it may
result in over-fitting the data and may not generalize to perform
well outside of the training data. In this case, training error is
very low, but the error on the validation data is high and the
model is said to suffer from high variance [7]. On the other
hand, if the chosen architecture is too simple, it fails to learn
from the data (under-fitting) and performs badly on both the
training and validation data. In this case, the model is said to
suffer from high bias [7]. Learning curves [35], which plot the
training and validation errors as functions of the training data
size can be used to select the right architecture for reducing
both the bias and the variance of the model. Specifically, the
network architecture for which both training and validation
errors converge to a low value is typically chosen.

We learn a separate k-topic co-location model using neural
networks for each k ≥ 2 as opposed to a unified model for
reasons of higher accuracy. We plot learning curves for several
different neural network architectures for each k and select the
one which minimizes both bias and variance. While simpler
network architectures perform well for lower values of k, more
complex architectures are needed for higher values of k as the
search space increases. Section VI-B shows the learning curves
and accuracy of the learned models.

E. Limitations of the Model

It is important to note the limitations of the k-topic co-
location models. The learned latency models are specific to
a broker hardware type. Therefore, separate latency models
need to be learned for each new hardware type. Model
learning overhead for different hardware architectures can

be reduced by incorporating hardware-specific input features
in the learned models so that a single model can be used
across different architectures. Transfer learning [37] can also
be used for learning the latency models for different broker
architectures on the basis of existing models for a specific
hardware architecture. Finally, our model also assumes that
the per-sample processing performed at each topic is CPU-
bound. Incorporating different types of processing loads, such
as memory, disk or network bound in the latency model is our
planned future work.

The learned latency model is used by our topic placement
heuristics for k-TCP (see Section V) so that the latency
QoS of the topics is not violated on a broker. However,
subject to the inaccuracy of the latency prediction model, the
produced placement for some topics in the system may be
incorrect and may result in QoS violation for those topics.
Hence, our approach does not provide hard guarantees on
meeting the specified latency QoS. To address this issue, our
approach can be augmented with a feedback-based mechanism
where subscribers experiencing QoS violations can inform the
system, which can then place this topic on another broker
and also use this information to update the learned latency
model. Employing a latency model as opposed to relying
solely on a subscriber’s feedback has the following benefits:
1) QoS violations can be prevented proactively for most of
the cases where the latency model makes accurate predictions;
and 2) subscriber feedback-based mechanism can incur a large
overhead as the system scales.

V. NP-COMPLETENESS OF k-TCP AND
HEURISTICS-BASED SOLUTIONS

In this section, we analyze the computational complexity of
k-TCP and show that it is NP-hard for k ≥ 3, which represents
a fairly small degree of co-location. We then propose some
heuristics to solve k-TCP sub-optimally.

A. Feasibility Function
Before analyzing the complexity and proposing a solution

for k-TCP, we first rely on the latency prediction model to
define a feasibility function F , which indicates whether a given
set of at most k topics can be feasibly co-located on a broker.
Specifically, for any T

′ ⊆ T and |T ′ | ≤ k, we can rely on the
k′ co-location model for k′ = |T ′ | to predict the latencies for
all topics in T

′
, while using the individual parameters for each

topic, i.e., the per-sample processing interval pi and publishing
rate ri, as the input features for the model as described in
Section IV-D. We define:

F(T
′
) =

{
1 if `i(T

′
) ≤ τ for all ti ∈ T

′

0 otherwise

Hence, according to Property 1, we have:

F(T
′
) = 1 for any |T

′
| = 1 (5)

F(T
′
) = 1 implies F(T

′′
) = 1 for any T

′′
⊆ T

′
(6)

Note that, for a constant degree of co-location k, the set of
all possible inputs to the feasibility function F can be encoded



by at most
∑k

k′=1

(
n
k′

)
= O(nk) bits, i.e., polynomial in the

number of topics.

B. Complexity Analysis

We now show the computational complexity of k-TCP.

Theorem 1. For k ≤ 2, k-TCP can be solved in polynomial
time.

Proof. The claim is obvious for k = 1 (i.e., 1-TCP). In this
case, each topic must be assigned to a broker alone, and the
number of required brokers is therefore |B| = |T |.

For k = 2 (i.e., 2-TCP), construct a graph G = (V,E),
where |V | = |T | and each vertex vi ∈ V represents a topic
ti ∈ T . An edge eij exists between two vertices vi and vj
if the corresponding two topics ti and tj can be feasibly co-
located, i.e., F({ti, tj}) = 1. Finding a maximum matching
M of G, which can be computed in polynomial time [38],
will lead to an optimal solution, where each pair of matched
vertices (topics) are co-located on a broker and the unmatched
ones are each assigned to a broker alone. The optimal number
of required brokers is in this case |B| = |T | − |M |.

Theorem 2. For k ≥ 3, k-TCP is NP-hard.

Proof. We prove the NP-completeness for the decision version
of k-TCP, which for a given instance asks whether the collec-
tion of topics can be co-located on m or fewer brokers. The
problem is clearly in NP: given a co-location scheme, we can
verify in polynomial time that it takes at most m brokers and
that the set of co-located topics on any broker has a cardinality
at most k and form a feasible set (via the feasibility functions).

To show that the problem is NP-complete, we use a re-
duction from k-Dimensional Matching (k-DM), which is a
generalization of the well-known 3-Dimensional Matching
(3-DM) problem. For k-DM, we are given k disjoint sets
X1, X2, . . . , Xk, where all Xj’s have the same number m
of elements. Let M be a subset of X1 × X2 × · · · × Xk,
that is, M consists of k-dimensional vectors (x1, x2, . . . , xk)
such that xj ∈ Xj for all 1 ≤ j ≤ k. The question is
whether M contains a perfect matching M

′ ⊆ M , that is,
|M ′ | = m, and for any distinct vectors (x

′

1, x
′

2, . . . , x
′

k) ∈M
′

and (x
′′

1 , x
′′

2 , . . . , x
′′

k) ∈ M
′
, we have x

′

j 6= x
′′

j for all
1 ≤ j ≤ k. It is known k-DM is NP-complete for k ≥ 3 [21].

Given an instance I1 of k-DM, we construct an instance
I2 of k-TCP by creating km topics, each corresponding to an
element in I1. For each vector (x1, x2, . . . , xk) ∈M in I1, we
set the corresponding set of topics to be feasible in I2, i.e.,
F({x1, x2, . . . , xk}) = 1, and derive the other feasible sets
using Equations (5) and (6) while leaving all the remaining
sets to be infeasible. Finally, the bound on the number of
brokers in I2 is set to be m. Clearly, if I1 admits a perfect
matching of size m, then we can co-locate the corresponding
sets of topics in I2 using m brokers. On the other hand, if all
topics in I2 can be co-located using m brokers, since there are
km topics in total and each broker can accommodate at most k
topics, then each broker must contain exactly k distinct topics,
which based on the reduction must come from the elements in

one of the k-dimensional vectors of I1. Thus, using the sets
of co-located topics in I2, we can get a perfect matching M

′

for I1.

C. Heuristics

Given the NP-hardness result for k ≥ 3, we propose
heuristic solutions to solve k-TCP sub-optimally. Recall that
the goal is to find a co-location scheme for a collection T of
topics on a minimum set B of brokers. Equivalently, the topics
could be considered to form a partition of B disjoint subsets
{T (b1), T (b2), . . . , T (b|B|)} such that each broker bj hosts a
feasible subset T (bj) ⊆ T of topics, i.e.,

⋃
bj∈B T (bj) = T

and T (bj)
⋂
T (bj′) = ∅ for any bj 6= bj′ .

In the following, we first describe two heuristics that are
inspired by the greedy algorithms in bin packing and set cover
problems, respectively, and apply them to the k-TCP context.
We then present a hybrid heuristic that combines the two
algorithms.

a) First Fit Decreasing: The first heuristic is inspired by
a greedy algorithm in the bin packing problem, which we call
First Fit Decreasing, or FFDk for a given degree of co-location
k, and its pseudocode is presented in Algorithm 1. First, the
algorithm sorts all topics in decreasing order of latency when
they are assigned to a broker in isolation (line 2). Then, it
considers each topic in sequence and finds the first broker that
can feasibly host it together with the existing topics that have
already been assigned to the broker (lines 6-15). If no such
broker can be found, it starts a new broker and assigns the topic
there (lines 16-19), which according to Property 1(a) is always
feasible. The complexity of the algorithm is O(n log n+n|B|),
where |B| is the total number of brokers in the solution. Since
|B| ≤ n, the algorithms runs in O(n2) time in the worst case.

b) Largest Feasible Set: The second heuristic is inspired
by the greedy algorithm in the set cover problem and the set
packing problem. We call it Largest Feasible Set, or LFSk for a
given degree of co-location k, and its pseudocode is presented
in Algorithm 2. Specifically, the algorithm works in iterations.
At each iteration, it finds any largest feasible set of k topics
and co-locates them on a new broker (lines 4-8). If no such set
can be found anymore, the maximum degree of co-location k
is then decremented by 1 (line 9), and the process continues
until k is reduced down to 2, in which case we can run the
maximum matching algorithm (lines 10-12) as described in the
proof of Theorem 1 that guarantees to co-locate the remaining
topics in an optimal fashion. The complexity of the algorithm
is O(nk) dominated by enumerating all possible subsets of
k topics in the worst case for the feasibility test. Note that
although the complexity is polynomial in the number n of
topics, the running time can be prohibitive for a high degree
of co-location (e.g., k > 4) on even moderate n. We resolve
this problem below with a hybrid heuristic.

c) A Hybrid Solution: We now present a heuristic that
combines the benefits of top-down search of LFS and low
complexity of FFD. In particular, the algorithm takes a param-
eter k′ ≤ k as input, and Algorithm 3 shows its pseudocode.
We call the algorithm LFSk′+FFDk. Similarly to LFSk, this



Algorithm 1: FirstFitDecreasing (FFDk)
Input: Collection T = {t1, t2, . . . , tn} of n topics, latency `i for each

topic ti ∈ T when assigned to a broker in isolation, degree of
co-location k, and feasibility function F

Output: A partition of topics {T (b1), T (b2), . . . , T (b|B|)} for a set
B of brokers with each broker bj ∈ B hosting a subset
T (bj) ⊆ T of topics

1 begin
2 Sort the topics in decreasing order of latency when assigned to a

broker in isolation, i.e., `1 ≥ `2 ≥ · · · ≥ `n;
3 Initialize |B| ← 0;
4 for topic ti (i = 1 . . . n) do
5 mapped← false;
6 for broker bj (j = 1 . . . |B|) do
7 if |T (bj)| = k then
8 continue;
9 end

10 if F(T (bj)
⋃
{ti}) = 1 then

11 T (bj)← T (bj)
⋃
{ti};

12 mapped← true;
13 break;
14 end
15 end
16 if mapped = false then
17 |B| ← |B|+ 1;
18 Start a new broker b|B| with T (b|B|) = {ti};
19 end
20 end
21 end

Algorithm 2: LargestFeasibleSet (LFSk)
Input: Collection T = {t1, t2, . . . , tn} of n topics, degree of

co-location k, and feasibility function F
Output: A partition of topics {T (b1), T (b2), . . . , T (b|B|)} for a set

B of brokers with each broker bj ∈ B hosting a subset
T (bj) ⊆ T of topics

1 begin
2 Initialized |B| ← 0;
3 while T 6= ∅ do
4 while ∃T ′ ⊆ T s.t. F(T ′

) = 1 and |T ′ | = k do
5 |B| ← |B|+ 1;
6 Start a new broker b|B| with T (b|B|) = T

′
;

7 T ← T\T ′
;

8 end
9 k ← k − 1;

10 if k = 2 then
11 MaximumMatching(T );
12 end
13 end
14 end

hybrid solution also works in iterations, but an iteration now
consists of two steps. In the first step, any feasible set of k′

topics (if any) are found and co-located on a new broker (lines
4-7). This is followed by the second step, which uses the first
fit heuristic to maximize the degree of co-location up to k
on this broker (lines 8-16) based on a sorted sequence of the
remaining topics (line 2). This two-step iteration continues
until no feasible set of k′ topics can be found. In this case, the
algorithm resorts to LFS with parameter k′ − 1 for assigning
the remaining topics (line 18). The overall complexity of the
algorithm is O(nk

′
+n2/k′), with the two parts coming from

running LSF initially (using parameter k′) and FFD (on at
most n/k′ brokers), respectively. Note that when the parameter

Algorithm 3: LFSk′+FFDk

Input: Collection T = {t1, t2, . . . , tn} of n topics, latency `i for each
topic ti ∈ T when assigned to a broker in isolation, degree of
co-location k, parameter k′ ≤ k, and feasibility function F

Output: A partition of topics {T (b1), T (b2), . . . , T (b|B|)} for a set
B of brokers with each broker bj ∈ B hosting a subset
T (bj) ⊆ T of topics

1 begin
2 Sort the remaining topics in decreasing order of latency when

assigned to a broker in isolation;
3 Initialized |B| ← 0;
4 while ∃T ′ ⊆ T s.t. F(T ′

) = 1 and |T ′ | = k′ do
5 |B| ← |B|+ 1;
6 Start a new broker b|B| with T (b|B|) = T

′
;

7 T ← T\T ′
;

8 for topic ti(i = 1 . . . |T |) do
9 if |T (b|B|)| = k then

10 break;
11 end
12 if F(T (b|B|)

⋃
{ti}) = 1 then

13 T (b|B|)← T (b|B|)
⋃
{ti};

14 T ← T\{ti};
15 end
16 end
17 end
18 LargestFeasibleSet(T , k′ − 1);
19 end

satisfies k′ = k the algorithm becomes exactly LFSk, and
when k′ = 1 it becomes FFDk. Thus, for a suitable choice of
k′, the algorithm combines the two previous heuristics while
offering a lower complexity solution to the problem.

VI. EXPERIMENTS

In this section, we present experimental results to validate
our proposed solution for providing latency QoS of data deliv-
ery in publish-process-subscribe systems. We first describe the
testbed used for conducting the experiments, and then present
the accuracy results of the k-topic co-location model and the
performance results for the proposed k-TCP heuristics.

A. Experimental Testbed and Setup

Our testbed comprises 25 heterogeneous machines running
Ubuntu 14.04, of which 13 are homogeneous machines with
four 2.5GHz Intel Xeon E5420 cores, 4GB RAM and 1Gb/s
network adapter, which were used for running the brokers. The
k-topic co-location models are learned for this hardware type.
The remaining machines were used to host the publisher/sub-
scriber endpoints and the Zookeeper coordination service. We
benchmarked the machines used to run the endpoints to find
the maximum number of endpoints that can be run on them
reliably. This was done to minimize the effect of resource
contention on the experimental results. All machines were time
synchronized using NTP.

Drawing from our motivational use case (Section III-A) and
the RIoTBench [43] results in which the ETL and prediction
stream processing pipelines for the New York taxi data were
benchmarked to take between 10ms and 40ms, the per-sample
processing interval for any topic in our experiments was set
to be either 10ms, 20ms, 30ms or 40ms. Publisher endpoints
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Fig. 2: Performance of latency prediction model

send 4KB messages at the rate of 1 message/second for two
minutes (i.e., a total of 120 messages per publisher) to ensure
that any experiment runs for a reasonable length of time.
If a topic t in an experiment is configured with per-sample
processing interval p and publishing rate r, then the broker
is configured to execute stress-ng matrix-product
so that it takes p per-sample processing time. Additionally,
one subscriber and r publisher endpoints for topic t are
created. All subscriber and publisher endpoints connect to the
system before starting the experiment to ensure the fidelity of
experimental results. In computing the 90th percentile latency
of a topic, the latency values for some initial messages on the
topic are not considered since they are observed to be very
high due to initialization and connection setup.

TABLE I: Accuracy of k-topic co-location model

k
#datapoints
(training)

accuracy
(training)

accuracy
(test)

#datapoints
(validation)

accuracy
(validation)

2 2000 .987 .985 100 .972
3 3000 .985 .978 150 .976
4 4000 .983 .979 200 .984
5 5000 .981 .978 250 .951
6 6000 .981 .956 300 .968

B. k-Topic Co-location Model Learning

In order to learn the k-topic co-location model for k ≥ 2,
we first learn the latency model for a topic in isolation, i.e.,
when k = 1. In particular, the 1-topic co-location model takes
the per-sample processing interval p and publishing rate r of
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Fig. 3: Performance of k-TCP heuristics for varying n

a topic t as inputs and predicts its 90th percentile latency `.
We can use this model to estimate the maximum sustainable
publishing rate rmax for the topic with per-sample processing
time p beyond which the 90th percentile latency for the topic
will violate its desired QoS τ . This maximum rate rmax is used
to ensure Property 1(a), i.e., a topic can always be placed on a
broker in isolation, otherwise topic replication and partitioning
of publishers over topic replicas [22] will be needed.

We found that polynomial regression of degree 4 provides
the best fit for the 1-topic co-location model with a training and
test accuracy of .975 and .97, respectively. We used a dataset
with 180 datapoints; 60% of which were used for training and
the remaining 40% were used for testing. Figure 2a shows the
fit of the polynomial curve in degree 4 over experimentally
observed 90th percentile latency values. Here, the x-axis shows
the publishing rate r in messages/second and the y-axis shows
the 90th percentile latency in milliseconds for p values of
10ms, 20ms, 30ms and 40ms. Using the model, we found
the rmax for sub-second 90th percentile latencies to be 78
messages/second, 37 messages/second, 24 messages/second
and 20 messages/second for p values of 10ms, 20ms, 30ms
and 40ms, respectively.

We then used rmax found under the 1-topic co-location
model to create the training dataset for k-topic co-location
models with k ≥ 2. To create the training dataset, for
each topic, p was uniformly randomly chosen from the set
{10ms, 20ms, 30ms, 40ms} and r was uniformly randomly
chosen from the range [1, rmax]. For each k-topic co-location
model, we trained over 1,000 different randomly generated test
configurations, and each configuration contains k datapoints,
one for each of the k topics. This gives 1000k datapoints for

each k-topic co-location model. A test runs for ∼3 mins and
it took ∼11 days to collect the training data to learn these
offline latency models. In all of these experiments, the network
utilization was kept well below the 1Gb/sec network capacity
of the broker to make sure that network saturation does not
impact the gathered results.

We tested different neural network architectures for each k-
topic co-location model, and found that a neural network with
two hidden layers composed of 40 neurons each performed
well for k ≤ 5. Figure 2e shows the learning curve for
k = 4. The learning curve shows that the chosen neural
network architecture has low bias and variance since both
training and validation errors converge to a low value of ∼3%.
A more complex neural network architecture was needed for
k = 6 as the parameter space increases. In this case, a neural
network with two hidden layers composed of 100 neurons each
performed well. Figure 2f shows the learning curve for the 6-
topic co-location model. Again, we see that the chosen neural
network architecture has both low bias and low variance.

As described in Section IV, the input features for the model
are pf , rf , df ,

∑
tb∈TB

pb,
∑

tb∈TB
rb and

∑
t∈TB

db. Table I
shows the accuracy of the learned models for k up to 6.
We used the logarithm of the 90th percentile latency as the
output for the model as it performed better than using the 90th
percentile latency value itself. Rectified Linear Units (ReLu)
was used as the activation function, the limited memory
Broyden-Fletcher-Goldfarb-Shanno (lbfgs) solver was used
and the L2 regularization factor was set to 0.1. We used 95% of
the datapoints for training and the remaining 5% for testing. A
separate validation dataset was created by running 50 different
test configurations for each k. The performance of the learned
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Fig. 4: Performance of LFSk′+FFDk for varying k′

models on the validation dataset is also shown in Table I. We
see that the learned models have an accuracy of ∼97%.

Figure 2b shows the performance of the 2-topic co-location
model on the validation dataset. We see that the predicted
latency tracks the experimentally observed latency values
closely. Similarly, Figure 2c and Figure 2d show the perfor-
mance of the 6-topic co-location model on test data points
for which the experimentally observed latency values are
below and above τ , respectively. There are cases where the
model makes inaccurate latency predictions, resulting in both
false-positives and false-negatives. Figure 2c shows a false-
positive occurrence where the predicted value is greater than
τ and the experimentally observed 90th percentile latency is
below τ . Figure 2d shows a false-negative occurrence where
the predicted 90th percentile latency is below τ and the
experimentally observed 90th percentile latency is above τ .
False negatives result in QoS violations and false positives
result in inefficient resource utilization. Further improvement
in the accuracy of the k-topic co-location model by using
advanced machine learning methods is part of our planned
future work.

C. Performance of k-TCP Heuristics

We now study how each of the three k-TCP heuristics,
namely FFDk, LFSk, and LFSk′+FFDk, perform for k = 6
as the number of n topics to be placed increases. We set the
parameter k′ of the hybrid heuristic to be k′ = 3. In Figure 3,
we present results averaged over 5 random placement requests
for each value of n. The performance of these heuristics
is compared along the following six dimensions: 1) number
of brokers needed for hosting n topics; 2) time to find a

placement solution for n topics; 3) average CPU utilization
of all brokers used for hosting n topics; 4) average 90th
percentile latency of all n topics; 5) percentage of all messages
across n topics with latency greater than τ (1 second); and 6)
percentage of n topics whose 90th percentile latency is greater
than τ .

In Figure 3a, we observe that the three heuristics perform
similarly to each other in terms of the number of brokers used
for placing the topics. LFSk is able to find a placement which
uses less number of brokers than both FFDk and LFSk′+FFDk

for most of the cases. However, as seen in Figure 3b, LFSk

takes a much longer time to find a placement than FFDk. As
expected, LFSk′+FFDk, being a hybrid of the other two, takes
less time than LFSk but more time than FFDk. Average CPU
load of the brokers in the system for the placement produced
by FFDk, LFSk and LFSk′+FFDk as seen in Figure 3c, does
not show a wide variation.

Figure 3d shows the average 90th percentile latency across
all n topics in the system for the placements produced by
the three heuristics. FFDk and LFSk′+FFDk have comparable
performance in most cases, while LFSk yields a lower average
90th percentile latency for all values of n. Figure 3e shows that
up to 9% of all messages in the system are not able to meet
their latency QoS. The percentage of messages that miss their
QoS is comparable for both FFDk and LFSk′+FFDk in most
cases, while LFSk performs better with a lower percentage of
messages with QoS violations. Similarly in Figure 3f, we see
that the percentage of topics that miss their QoS is comparable
for FFDk and LFSk′+FFDk in most cases, while LFSk yields
a lower percentage of topics with missed QoS in almost all
cases except for n = 70. It shows that up to 13% of the



topics in the system miss their QoS due to incorrect broker
assignment, and we are able to meet the QoS requirements for
87% of the topics in the system. As discussed in Section IV,
our solutions can be used along with a subscriber feedback
mechanism to place the topics experiencing QoS violation on
another broker.

These results show that while LFSk heuristic performs better
than FFDk and LFSk′+FFDk, it has a prohibitively large
running time. On the other hand, FFDk takes much less time
to compute the placement and performs comparably well with
LFSk′+FFDk. Hence, by tolerating some degradation in per-
formance, simpler heuristics such as FFDk can be employed in
favor of computationally more expensive heuristics like LFSk.

D. Performance of LFSk′+FFDk

Finally, we study how the hybrid heuristic LFSk′+FFDk

performs with varying value of k′. As discussed earlier in
Section V, LFSk′+FFDk behaves as FFDk for k′ = 1 and as
LFSk for k′ = k. Figure 4 shows the results when k′ varies
from 1 to 6. For each value of k′, we present results averaged
over the same 5 random placement requests for n = 50 topics.

As expected, for higher values of k′, LFSk′+FFDk finds
a placement that uses fewer brokers, as seen in Figure 4a.
However, the time to find the solution also increases with k′ as
seen in Figure 4b. Average CPU utilization of the brokers does
not show much variation for different values of k′, as seen in
Figure 4c. Average 90th percentile latency increases for higher
values of k′ as seen in Figure 4d, since the placement of topics
produced is more compact. Once again, the QoS requirement
is not always met in the placement solution produced by the
hybrid heuristic. Up to 6% of the messages and up to 12% of
the topics experience QoS violations as seen in Figure 4e and
Figure 4f.

VII. CONCLUSION AND DISCUSSIONS

Many emerging IoT applications are latency critical in
nature and require both real-time data dissemination and in-
formation processing. The Publish/Subscribe (pub/sub) pattern
for many-to-many communications is often used to meet the
scalable data dissemination needs of IoT applications. With the
emergence of edge computing that promotes processing near
the source of data, the pub/sub system has been extended to
support processing at the edge-based pub/sub brokers, making
it the publish-process-subscribe pattern. It is in this context
that end-to-end quality of service (QoS) for data dissemination
and processing must be satisfied to realize the next generation
of edge-based, performance-sensitive IoT applications.

This paper presents a solution to provide the desired la-
tency QoS for data dissemination and processing in topic-
based publish-process-subscribe systems. Our proposed solu-
tion learns a latency prediction model for a set of co-located
topics on an edge broker and uses this model to balance the
processing and data-dissemination load to provide the desired
QoS. Specifically, the paper made the following contributions:
(a) a sensitivity analysis on the impact of different pub/sub
features including the number of subscribers, number of

publishers, publishing rate, per-sample processing interval and
background load, on a topic’s 90th percentile latency; (b) a
latency prediction model for a topic’s 90th percentile latency,
which was then used for the latency-aware placement of topics
on brokers; and (c) an optimization problem formulation for
k-topic co-location to minimize the number of brokers used
while providing QoS guarantees.

The following lessons were learned from and insights into
different dimensions of future work were informed by this
research:
• The accuracy of the k-topic co-location model has a

significant impact on QoS satisfaction and resource ef-
ficiency. More advanced machine learning methods for
learning the k-topic co-location model could be inves-
tigated. For higher values of k, training over a larger
search space is needed for good accuracy, but this will re-
quire significant additional resources for model learning.
Online methods for updating the prediction model can
also be explored, e.g., via reinforcement learning [29].
Transfer learning [37] of the k-topic co-location models
for different hardware architectures on the basis of some
learned models is another direction that can be explored.

• Currently, our load balancing decisions are made stat-
ically including the topic placement decisions. Future
work will therefore involve dynamic load balancing de-
cisions including elastic auto-scaling of the number of
brokers used. Proactive provisioning of resources can
also be performed on the basis of workload forecasting.
Finally, network link state can also be incorporated.

The source code and experimental apparatus used in the
research is made available in open source at https://github.
com/doc-vu/edgent.
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