
OneOS: POSIX + Actors = General-Purpose IoT Platform
Kumseok Jung

University of British Columbia
Electrical and Computer Engineering

Vancouver, BC, Canada
kumseok@ece.ubc.ca

Julien Gascon-Samson
University of British Columbia

Electrical and Computer Engineering
Vancouver, BC, Canada

julien.gascon-samson@ece.ubc.ca

Karthik Pattabiraman
University of British Columbia

Electrical and Computer Engineering
Vancouver, BC, Canada
karthikp@ece.ubc.ca

ABSTRACT
The Internet of Things (IoT) is now a reality. With an increasing
number of "smart" devices, a recent interest in Edge/Fog Computing
has challenged IoT platforms to support general-purpose workloads
on arbitrary devices with the same performance and reliability guar-
antees as the Cloud. We present a design of an IoT platform called
OneOS, resembling a Distributed Operating System, to provide a
single-system image of the entire network of computers. OneOS
operates over an abstract machine comprising a grid of high-level
language runtimes modeled as Actors. We demonstrate an evalua-
tion context replacement technique for mapping the POSIX interface
over the networked system to run regular JavaScript and Python
programs on OneOS without any modification.
ACM Reference Format:
Kumseok Jung, Julien Gascon-Samson, and Karthik Pattabiraman. 2019.
OneOS: POSIX + Actors = General-Purpose IoT Platform. In Proceedings
of ACM Conference (Conference’17). ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 MOTIVATION AND APPROACH
To perform more computations at the Edge, IoT platforms need to
support general-purpose distributed processing in an efficient way.
There are two high-level goals of a general-purpose IoT platform:
1) to provide a dependable software infrastructure, 2) to provide a
programming environment for a user (e.g. an application developer)
to leverage the distributed computing features of the platform.

The majority of IoT middlewares and platforms organize their
infrastructure in a 3-tier hierarchical topology comprising inter-
operating services[3, 5, 8]. While they abstract away the complexity
of distributed computing, it comes at the cost of programmability
and flexibility; the user must write programs using a particular API
and have prior knowledge of the service infrastructure.

We observe that the purpose of an IoT platform is analogous to
that of an Operating System (OS). POSIX interfaces, such as pipes
and file descriptors, can be mapped onto the networked system to
construct an OS-like environment, allowing existing programs to be
reused without modification. Reading from a sensor and writing the
value into a file should be no more complicated than issuing a single
line of shell command: cat /dev/sensor/1 > sensor-1.log.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 SYSTEM DESIGN
Drawing inspiration from work on Distributed OS(DOS)[1, 2, 7],
we propose a design of an IoT platform, which we call Overlay Net-
work Operating System (OneOS), operating in the application layer
over a group of abstract Actors[6]. As its model of the underlying
machinery is at a higher-level of abstraction than bare metal, it has
different responsibilities than a Host OS. In particular, the low-level
responsibilities of managing the processor, memory, and I/O are
delegated to the local kernels, while OneOS administers higher-
level services such as providing a file system interface, scheduling
workloads, and coordinating inter-process communication (IPC).

Network Model - We believe that keeping the infrastructure
simple is the key to a flexible and future-proof IoT platform, and
hence a cluster-like organization is more suitable. The only infras-
tructural component in OneOS is the Actor middleware, which
we call Runtime. Its responsibilities are: 1) bootstrapping itself to
the network, and 2) running an Agent – an Actor abstraction of a
program. The Runtime knows the location of a Name Server, which
serves a Boot Record pointing to the Membership Service (MS) and
the Initialization Manifest (IM). MS enables the Runtimes to make
collective decisions through a consensus protocol. IM is analogous
to the UNIX init, describing the core OS services.

Services - IM describes 5 Kernel Agents that are essential to the
system’s operation: 1 Publish/Subscribe service mediates IPC be-
tween Agents, 2 Scheduler coordinates the deployment and stateful
migration[4] of Agents, and 3 Session service brokers interactions
with an end-user. 4 File System provides an indexing mechanism
for locating various resources within the network such as files,
peripheral devices, and network sockets; adopting the UNIX philos-
ophy that "everything is a file". We decouple the indexing mecha-
nism of the file system and define a separate 5 Storage service. The
Runtimes decide via the consensus protocol which of them should
run which Kernel Agent.

Runtime Model - A Runtime’s job is to start a new Agent upon
receiving a message. The Runtime is equipped with high-level lan-
guage runtimes such as Node.js and CPython, and we assume all
Agents are written in a supported language. Before instantiating an
Agent as a child process, the Runtime performs an evaluation context
replacement, in order to interpret the program in the OneOS con-
text instead of the local host context. This is achieved by creating
a virtual environment and instrumenting the program on-the-fly
to replace system calls like file and I/O read-writes with OneOS
API calls, after which the system calls of the child process are redi-
rected to the corresponding Kernel Agents and the standard FDs are
exposed to the network. We thus take a regular program and run
it on OneOS without requiring changes to the original program,
seamlessly mapping the POSIX interface over a networked system.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Conference’17, July 2017, Washington, DC, USA Kumseok Jung, Julien Gascon-Samson, and Karthik Pattabiraman

REFERENCES
[1] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca

Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singhania.
2009. The Multikernel: A New OS Architecture for Scalable Multicore Systems. In
Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles
(SOSP ’09). ACM, New York, NY, USA, 29–44. https://doi.org/10.1145/1629575.
1629579

[2] Sean M Dorward, Rob Pike, David Leo Presotto, Dennis M Ritchie, Howard W
Trickey, and Philip Winterbottom. 1997. The Inferno operating system. Bell Labs
Technical Journal 2, 1 (1997), 5–18.

[3] Eclipse Foundation. 2018. IoT Developer Survey 2018. Retrieved January 24, 2019
from https://www.slideshare.net/kartben/iot-developer-survey-2018

[4] Julien Gascon-Samson, Kumseok Jung, Shivanshu Goyal, Armin Rezaiean-Asel,
and Karthik Pattabiraman. 2018. ThingsMigrate: Platform-Independent Migration
of Stateful JavaScript IoT Applications. In 32nd European Conference on Object-
Oriented Programming (ECOOP 2018) (Leibniz International Proceedings in Infor-
matics (LIPIcs)), Todd Millstein (Ed.), Vol. 109. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany, 18:1–18:33. https://doi.org/10.4230/LIPIcs.
ECOOP.2018.18

[5] Julien Gascon-Samson, Mohammad Rafiuzzaman, and Karthik Pattabiraman. 2017.
ThingsJS: Towards a Flexible and Self-adaptable Middleware for Dynamic and
Heterogeneous IoT Environments. In Proceedings of the 4th Workshop on Middle-
ware and Applications for the Internet of Things (M4IoT ’17). ACM, New York, NY,
USA, 11–16. https://doi.org/10.1145/3152141.3152391

[6] Carl Hewitt. 2017. Actor Model of Computation for Scalable Robust Information
Systems. In Symposium on Logic and Collaboration for Intelligent Applications,.
Stanford, United States. https://hal.archives-ouvertes.fr/hal-01163534

[7] Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thompson, Howard
Trickey, and Phil Winterbottom. 1995. Plan 9 from bell labs. Computing systems 8,
2 (1995), 221–254.

[8] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke. 2016. Middleware
for Internet of Things: A Survey. IEEE Internet of Things Journal 3, 1 (Feb 2016),
70–95. https://doi.org/10.1109/JIOT.2015.2498900

https://doi.org/10.1145/1629575.1629579
https://doi.org/10.1145/1629575.1629579
https://www.slideshare.net/kartben/iot-developer-survey-2018
https://doi.org/10.4230/LIPIcs.ECOOP.2018.18
https://doi.org/10.4230/LIPIcs.ECOOP.2018.18
https://doi.org/10.1145/3152141.3152391
https://hal.archives-ouvertes.fr/hal-01163534
https://doi.org/10.1109/JIOT.2015.2498900

