Failure Prediction in the Internet of Things due to Memory Exhaustion

Mohammad Rafiuzzaman¹, Julien Gascon-Samson²,

Karthik Pattabiraman¹, Sathish Gopalakrishnan¹

¹Electrical and Computer Engineering, The University of British Columbia (UBC)

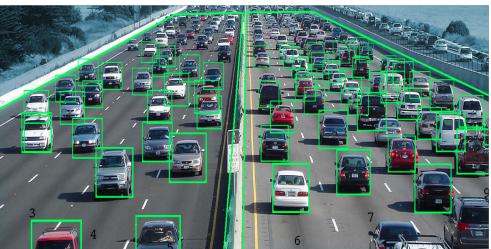
²École de technologie supérieure (ÉTS), Montreal

Edge Computing IoT -**...** IoT shutterstock.com · 763120990 Network Edge shutterstock.com · 763120990 Network Edge ••• Cloud shutterstock.com · 763120990 shutterstock.com · 7631209 W IoT IoT

An Example Application

www.zdnet.com

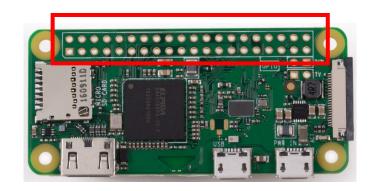
www.trafficvision.com



The New York Times

The Washington Post

Today's IoT



Sensor/Actuator

High-level Applications

GPOS

Challenges

• Resource (e.g., memory) constraints

- Resource constraints
- Performance uncertainty
- Unexpected failures
- General purpose applications
- Device specific optimizations
- Expected availability

Contributions

V Define a systematic approach to identify memory-failures in IoT

- Develop a novel technique called MARK for handling such failures
- Introduce simple classification (k-NN) models to predict such failures
- Evaluate those models under various real-world circumstances

Primary Resource Bottleneck

Resource consumption can be:

1. CPU-bound (processes waiting on CPU resources),

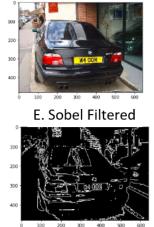
Memory-bound (processes consuming memory),

3. I/O bound (processes competing for disk or network I/O).

Many of the devices are severely memory constrained (< 1 GB typically)

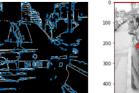
Failures In Edge Devices

A. Orig. Color Image

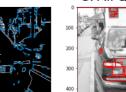


B. Grayscale Image C. Histogram Equalized

F. Corner Detection



G. All Quadrilateral



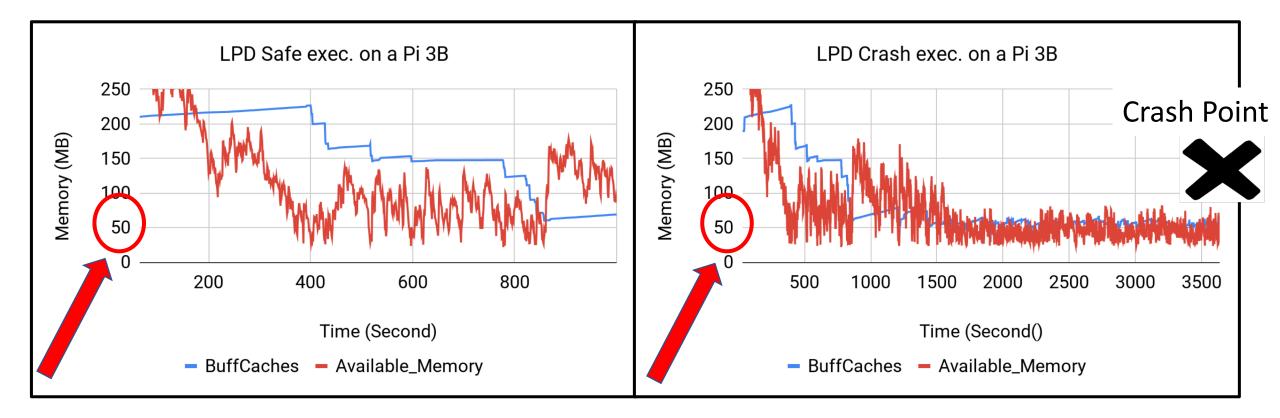
H. Licence Plate

D. Binarized

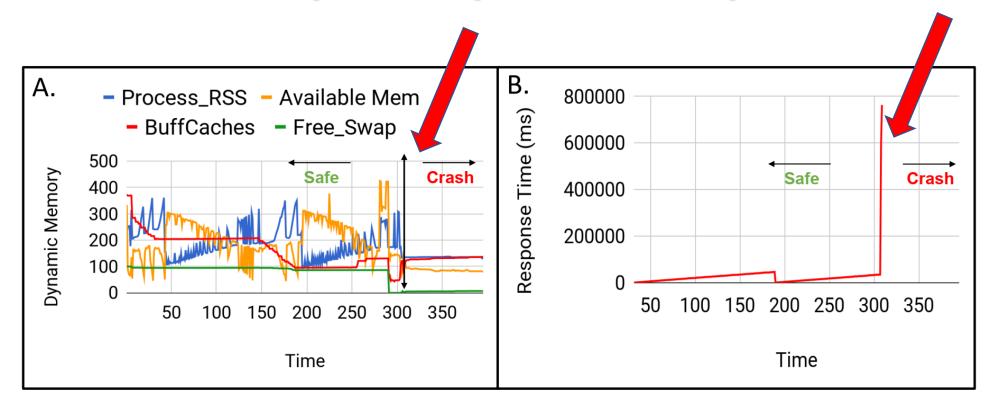
Failures:

- 1. Unresponsive application
- Application crash 2.
- 3. Permanent unresponsive system

Problem with Threshold-based Approaches

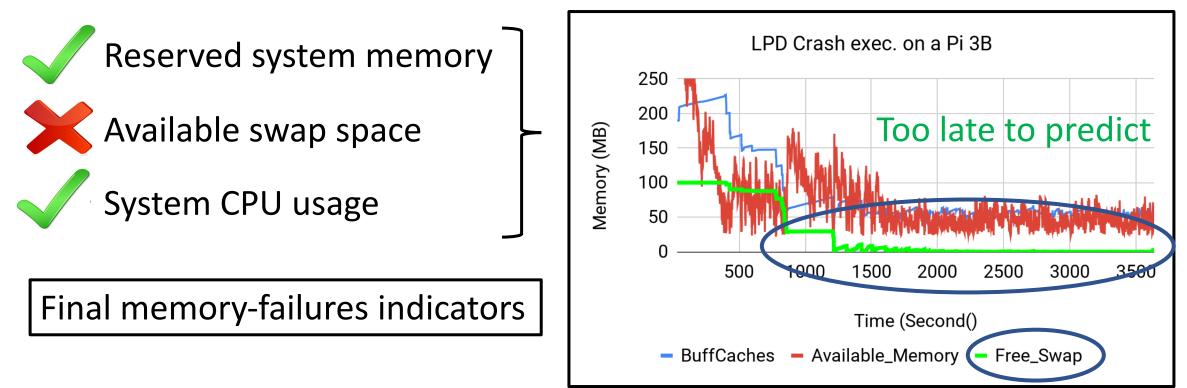


Preliminary Study: Memory Failures



Preliminary Study: Failure Indicators

Spearman's Rank-Order Correlation:



Contributions

• Define a systematic approach to identify memory-failures in IoT.

✓ Develop a novel technique called MARK for handling such failures.

- Introduce simple classification (k-NN) models to predict such failures.
- Evaluate those models under various real-world circumstances.

Features of MARK

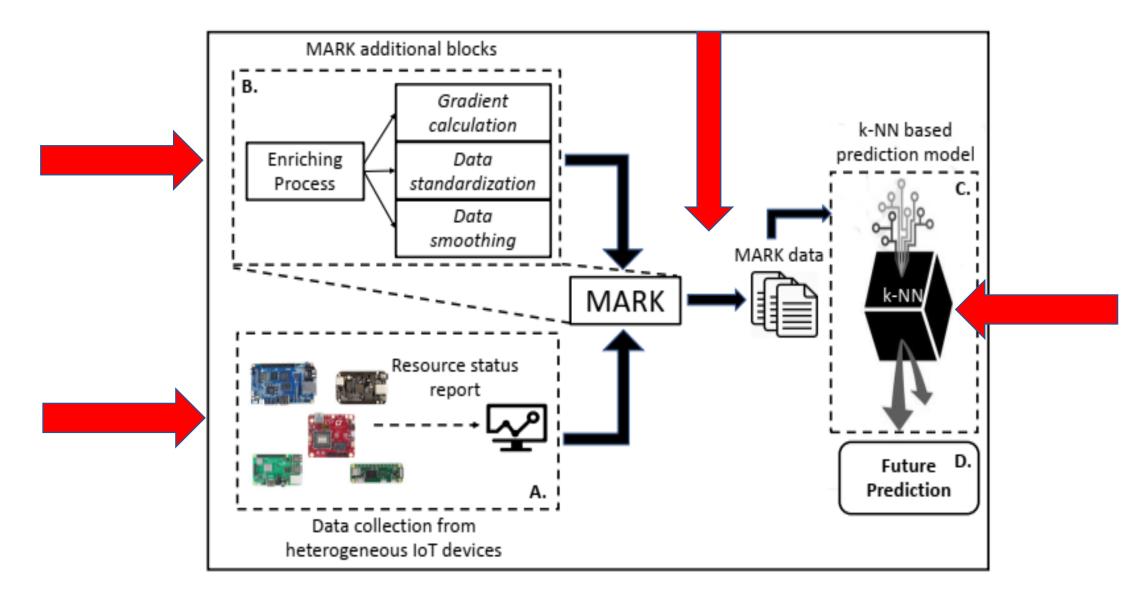
A memory failure prediction technique called MARK:

- Predicts onset of memory failures.
- Observes failure indicative parameters.
- Applies cross-platform predictor.
- Handles high-level applications.

For resource limited modern IoT systems

Provides enough lead time to prevent memory failures in advance

MARK Workflow



Contributions

- Define a systematic approach to identify memory-failures in IoT.
- Develop a novel technique called MARK for handling such failures.

Introduce simple classification (k-NN) models to predict such failures.

• Evaluate those models under various real-world circumstances.

Prediction model of MARK

Goal:

$$f:R \to S$$

Where:

$$R = \{Resource Measurements\}$$

 $S = \{safe, fail\}$

$$P(Y_{t+LAW} = s_{t+LAW}) = \frac{1}{k} \sum_{i \in A_t} I(Y_{i,t+LAW} = s_{t+LAW})$$

Contributions

- Define a systematic approach to identify memory-failures in IoT.
- Develop a novel technique called MARK for handling such failures.
- Introduce simple classification (k-NN) models to predict such failures.

Evaluate those models under various real-world circumstances.

Experimental Setup: Applications and Platforms

Video Surveillance

(node.js) Gascon-Samson et al, 2018.

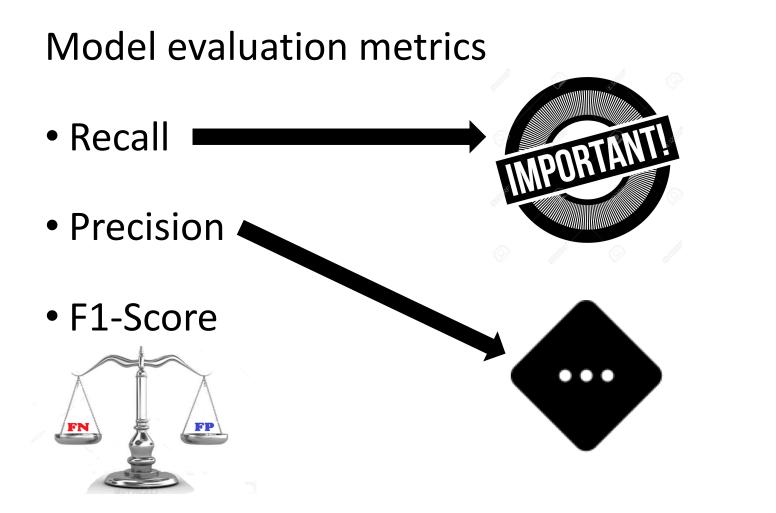
Automatic LPD (Python-skimage) Stefan et al. 2014

Sensor Data Processing

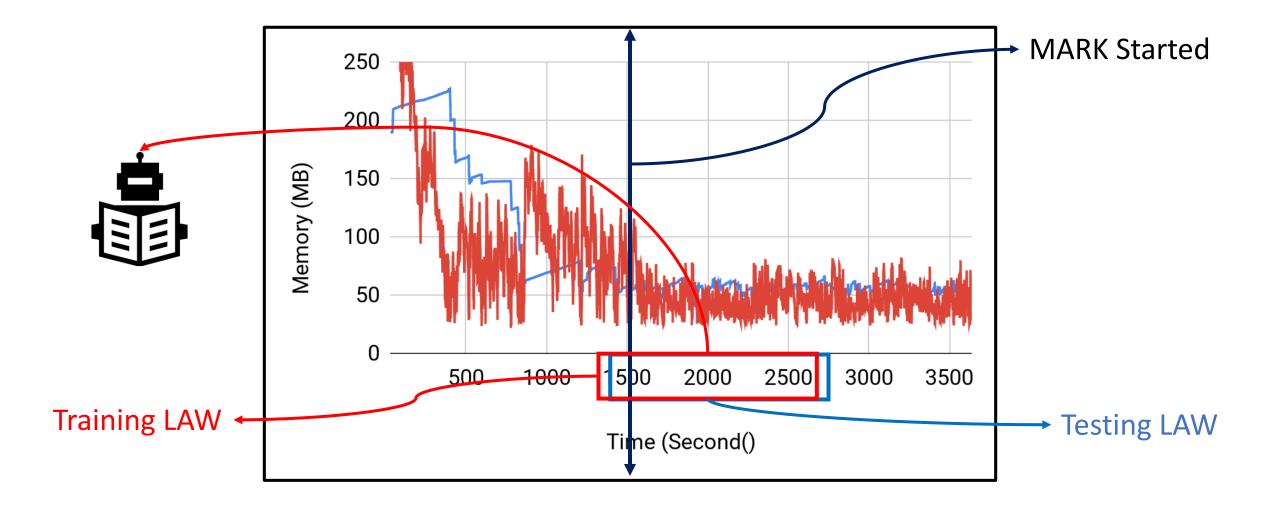
(node.js) A real world sensor-server simulation

	Memory	Swap Space	Processor
Pi 0W	512MB	100MB	single-core 1 Ghz ARM6
Pi 3B	1GB	100MB	quad-core 1.2 Ghz ARM7
EC2 t2	1GB	N/A	single-core virtual CPU

Experimental Setup: Metrics



Look Ahead Window (LAW)

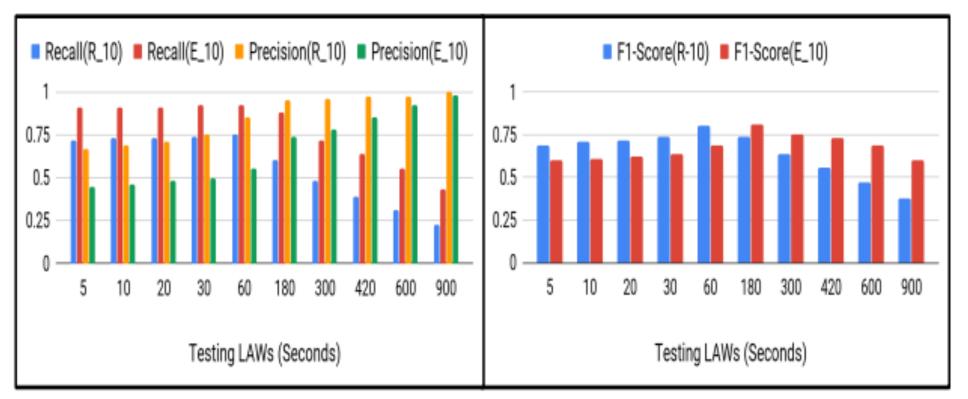


Experimental Setup: Configurations

Sets	<i>S</i> ₁	S_2		S3		
Models	R_10	E_10	E_60	E_300	EE_10	EE_60
Train LAWs	10 Seconds	10 Seconds	60 Seconds	300 Seconds	10 Seconds	60 Seconds
Train Applications	SensorSim	SensorSim + Surveillance			SensorSim + Surveillance + LPD	
Test Applications	Motion-	Motion-Detector +	Motion-Detector +	Motion-	LP	D
	Detector	SensorSim + LPD	LPD + Multitenancy	Detector		
Test Platform	Pi 0W	Pi 0W + Pi 3B + EC2 Pi 0W		Pi 3B		
Performance com-	E_10	Threshold Tech.,	E_300	E_60	E_10	E_60
pared with		Compute Overhead				

Results: Recall and Precision

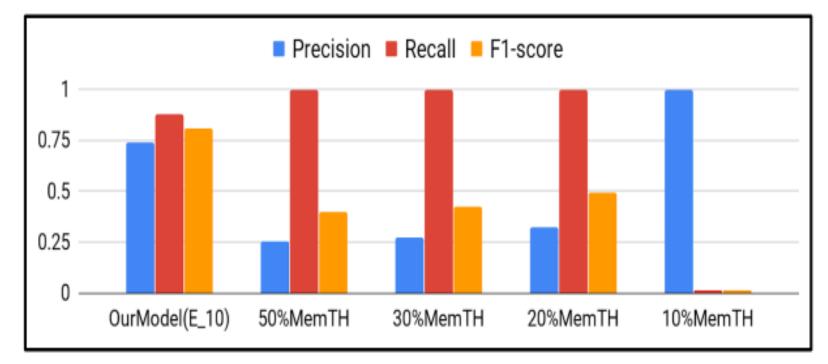
Surveillance on a Pi OW



Recall rate is about 75% and precision is about 80% for a Look-ahead-Window (LAW) of 5 minutes (300 seconds)

Results: Threshold-based Schemes

Comparison with a Threshold-based system



Threshold-based schemes have higher recall but lower precision, or very low recall and high precision

Results: Overhead

Computational overhead						
Test data length in Seconds	Time Overhead in Seconds	Memory Overhead in MB				
100	4.1	92.4				
1000	5.1	93				
5000	8.7	94.5				
10300	13.1	96.9				

Summary

- Memory exhaustion failures can be catastrophic in IoT devices
- Need failure prediction and mitigation techniques tuned for IoT
- Proposed MARK, that uses k-NN model for failure prediction
- Evaluated MARK under various real-world configurations.
 - MARK has precision and recall of over 75% with a 5 minute window