
DynPubSub: A Peer To Peer Overlay For Topic-Based
Pub/Sub Systems Deployed at the Edge
Chamseddine Bouallegue

chamseddine.bouallegue.1@ens.etsmtl.ca
Department of Software and IT Engineering

ETS Montreal / University of Quebec

Julien Gascon-Samson
julien.gascon-samson@etsmtl.ca

Department of Software and IT Engineering
ETS Montreal / University of Quebec

Abstract
There aremore andmore IoT devices that produce and con-

sume and ever increasing amount of data. Publish-subscribe
(Pub/Sub) is a well known paradigm that simplifies the task
of exchanging messages, as it decouples the communica-
tion between the entities that emit and consume messages.
While traditionally deployed in a centralized cloud-based
manner, the different components of a pub/sub system can
be deployed directly onto the edge devices, in a peer-to-
peer manner, to achieve the required low latency for most
IoT applications. In this poster, we propose DynPubSub, a
new peer-to-peer network overlay for topic based pub/sub
systems deployed at the edge. DynPubSub provides fault
tolerance and scalability, and aims at minimizing the latency
while respecting the constraints of the edge devices and
networks.

Keywords: IoT, Edge Computing, Publish/Subscribe, Peer
To Peer

ACM Reference Format:
Chamseddine Bouallegue and Julien Gascon-Samson. 2020. Dyn-
PubSub: A Peer To Peer Overlay For Topic-Based Pub/Sub Systems
Deployed at the Edge. In 21st International Middleware Conference
Demos and Posters (Middleware ’20 Demos and Posters), December
7–11, 2020, Delft, Netherlands.

https://doi.org/10.1145/3429358.3429373

1 Introduction
The publish/subscribe paradigm is well used across IoT

applications, as it offers efficient and distributed content
delivery [1] . While there are several flavours of publish/sub-
scribe systems, the most common is topic-based, which relies
on predefined channels in which all subscribers registered
to a given topic will receive the messages published onto

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
Middleware ’20 Demos and Posters, December 7–11, 2020, Delft, Netherlands
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8202-1/20/12.
https://doi.org/10.1145/3429358.3429373

Figure 1. Pub/Sub Scenario

that topic. The MQTT (Message Queuing Telemetry Trans-
port) protocol proposes a standardized implementation of a
topic-based pub/sub messaging protocol that is reliable for
connecting remote devices with minimal network bandwidth
(Figure 1).

The infrastructure of a pub/sub system is usually com-
posed of one or more brokers deployed in a centralized man-
ner (e.g., in the cloud). However, given the stringent latency
requirements for IoT applications, and the unreliability of
some IoT network connections, there is a need for a more
localized and distributed deployment of the communication
infrastructure. Further, given that edge devices are getting
more powerful, we envision deploying the topic-based pub-
/sub communication infrastructure directly onto the edge
(IoT) devices, in a distributed, peer-to-peer, manner.

While several works have proposed peer-to-peer topic-
based pub/sub systems (e.g. Tera [2], Scribe [3] which is built
on top of the Pastry distributed infrastructure [4], Spider-
Cast [5], and PolderCast [6]), DynPubSub aims at address-
ing the specific challenges of the IoT context by optimizing
the deployment of the infrastructure onto the edge devices.
Overall, DynPubSub proposes a dynamic edge overlay par-
titioning approach in which the topics of the pub/sub in-
frastructure are dynamically (re)mapped onto the various
edge devices according to the current network load and ca-
pabilities of the various edge nodes, with latency minimiza-
tion as the optimization goal. Further, we provide a library
that is API-compatible with the well-used Node.js MQTT li-
brary (mqtt.js), thereby allowing developers to transparently
switch between a centralized pub/sub deployment and the
peer-to-peer DynPubSub architecture without needing to
modify their code.

7

https://doi.org/10.1145/3429358.3429373
https://doi.org/10.1145/3429358.3429373

Middleware ’20 Demos and Posters, December 7–11, 2020, Delft, Netherlands Chamseddine and Julien

Edge / Cloud

CMQTT
Library

Plan

CMQTT
Library

Plan

Plan: {
 "Humidity": "Node 2",
 "Temperature": "Node 3",
 "Pressure": "Node 3"
}

Node 2 Node 33

6

Pu
bl

is
h:

 "3
5%

"

Subsc
rib

e t
o "H

umidity
"

Local MQTT
Broker

Local MQTT
Broker

Orchestrator / Load Balancer

Plan

CMQTT
Library

Plan

CMQTT
Library

Plan

Node 1

IoT App / Client 1 IoT App / Client 2 IoT App / Client 3

1

2

4

5

Application layer (Clients and IoT Application)

CMQTT
Library

Plan

CMQTT
Library

Plan

CMQTT
Library

Plan

Publish: "35%"

Topic: "Humidity"

Local MQTT
Broker

Local MQTT
Broker

Local MQTT
Broker

Local MQTT
Broker

Figure 2. Architecture and System Data Flow

2 System Model and Architecture
Our architecture (Figure 2) is composed of three layers: (1)

the application layer, which comprises IoT client applications
; (2) the edge peer to peer overlay layer, which interconnect
the system nodes and route the messages, and (3) the or-
chestrator layer, which gathers real-time performance data
from the edge layer and dynamically rebalances the load
by remapping the pub/sub topics onto the edge layer. We
assume that the edge layer infrastructure (2) can be deployed
onto the same nodes as the application layer (1), although
this is not a requirement.
The orchestrator periodically receives aggregated data

from the edge layer and periodically generates a plan which
minimizes the average latency while respecting the band-
width constraints of the edge nodes. The plan specifies which
edge node should be managing each topic defined in the pub-
/sub service. The cmqtt.js client-side library handles the
use of the plan to transparently dispatch publication and
subscription requests.
Figure 2 also illustrates the flow of messages for a client

performing a subscription and publication, using the exam-
ple scenario depicted in Figure 1. Considering the example
plan shown in Figure 2, (1) Client 1 subscribes to topic "Hu-
midity", its local MQTT broker accepts the subscription. (2)
The local MQTT broker looks at the plan via the "CMQTT"
library. (3) Local MQTT broker transmits the subscription to
"node 2" as it is responsible for topic "Humidity". (4) Client
2 publishes a message on topic "Humidity", its local MQTT
broker accepts the publication. (5) The local MQTT broker
consults the plan via the "CMQTT" library and transmit the
message to "node 2". (6) Finally, the local MQTT broker of

the "node 2" publishes the message from client 2 to the client
1 (subscriber).
3 Implementation

As mentioned, we aim at providing full API compatibility
with the Node.js MQTT library (mqtt.js), so that DynPubSub
can be used as a simple drop-in replacement. Listing 1 depict
a simple pub/sub client that corresponds to Figure 1.

Listing 1. Publish/Subscribe Sample Code
1 var cmqtt= r e q u i r e (" . . / cmqtt ") ;
2 / / impor t s the l i b r a r y
3 var c l i e n t =cmqtt . connec t (" mqtt : / / 1 9 2 . 1 6 8 . 1 . 1 5 : 1 8 8 3 ") ;
4 / / c onnec t s to the o r c h e s t r a t o r
5 c l i e n t . on (' connec t ' , f u n c t i o n () { }) ;
6 / / u se s connec t c a l l b a c k
7 f u n c t i o n pub l i shHumid i ty () {
8 l e t hum=35 ;
9 c l i e n t . p u b l i s h (" Humidity " ,hum . t o S t r i n g () + '% ') ;
10 }
11 c l i e n t . on (' connec t ' , f u n c t i o n () {
12 c l i e n t . s u b s c r i b e (" Humidity ") ;
13 / / s u b s c r i b e s to t o p i c " Humidity "
14 }) ;
15 c l i e n t . on ('message ' , f u n c t i o n (t op i c , message) {
16 c on so l e . l og (message . t o S t r i n g ()) ;
17 }) ;

4 Evaluation Strategy
We plan to evaluate our system on a high number of (Rasp-

berry Pi) and test the performance of the proposed approach
in terms of scalability, fault tolerance and latency.
5 Conclusion

In this paper, we presented a global overview of DynPub-
Sub, a peer to peer network overlay for topic-based pub/sub
systems deployed at the edge, which aims at reducing the
latency while considering the bandwidth as major constraint.
References
[1] Kato D. Kunieda K. Yamada K. Michiardi P Elkhiyaoui, K. A scalable

interest-oriented peer-to-peer pub/sub network. 2009 IEEE Ninth Inter-
national Conference on Peer-to-Peer Computing, pages 204–211, 2009.

[2] Vivien Quéma Roberto Baldoni, Roberto Beraldi. Tera: topic-based
event routing for peer-to-peer architectures. DEBS 2007, pages 2–13,
2007.

[3] M. Castro ; P. Druschel ; A.-M. Kermarrec ; A.I.T. Rowstron. Scribe: a
large-scale and decentralized application-level multicast infrastructure.
IEEE Journal on Selected Areas in Communications, 20(8):1489–1499,
2002.

[4] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object loca-
tion and routing for large-scale peer-to-peer systems. Middleware 2001,
2001.

[5] Y. Tock G. Chockler, R. Melamed and R.Vitenbergl. Spidercast: a scalable
interest-aware overlay for topic-based pub/sub communication. In DEBS,
2007, 2007.

[6] Roman Vitenberg Spyros Voulgaris Vinay Setty, Maarten Steen. Polder-
cast: Fast, robust, and scalable architecture for p2p topic-based pub/sub.
Middleware 2012, pages 271–291, 2012.

8

	Abstract
	1 Introduction
	2 System Model and Architecture
	3 Implementation
	4 Evaluation Strategy
	5 Conclusion
	References

