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Abstract—In the last few years, the number of IoT applications
that rely on stream processing has increased significantly. These
applications process continuous streams of data with a low delay
and provide valuable information. To meet the stringent latency
requirements and the need for real-time results that they require,
the components of the stream processing pipeline can be deployed
directly onto the edge layer to benefit from the resources and
capabilities that the swarm of edge devices can provide. In this
poster, we outline some ongoing research ideas into deploying
stream processing operators onto edge nodes, with the goal
of minimizing latency while ensuring that the constraints of
the devices and their network capabilities are respected. More
precisely, we provide a modeling of the semantics of the operators
that considers the interactions between different operators, the
parallelism of concurrent operators, as well as the latency and
bandwidth usage.

Index Terms—Edge computing, Stream Processing, Operator
Placement

I. INTRODUCTION

IoT devices are becoming increasingly popular. They pro-
duce a huge amount of data that IoT applications can quickly
process and consume to provide valuable information. In many
contexts (e.g., smart cities), IoT devices produce continuous
streams of data that must be processed with low delay [1].

In the traditional cloud-based model, the application is de-
ployed on resources that are provided in a centralized manner
[2]. In a stream processing context, continuous streams of data
need to be sent to the cloud server, thus potentially incurring
high bandwidth and latency. Given that most IoT applications
are time-sensitive, deploying stream processing operators in
a distributed manner at the edge (i.e., near the devices that
produce and consume the data, or directly onto these devices)
can help in reducing bandwidth usage and latency.

Different distributed stream processing frameworks have
been proposed (e.g., Apache Storm [3], Twitter Heron [4],
Apache Flink [5], etc), and most of them represent a given
application as a directed acyclic graph (DAG). They use
the data flow graph scheme and consider the operator as a
black box that processes the data [6]. In a DAG, each edge
represents an operator, and vertices represent the paths of data

Fig. 1. Operator Placement on the edge nodes [7]

flows between operators. In a distributed stream processing
(DSP) context, the operators are deployed on different nodes
(e.g., on different cloud, or edge nodes in our case). These
nodes provide the required resources for the operators (e.g.,
bandwidth, memory, processing power).

The goal of our research is to find an optimal mapping
of operators to edge nodes (e.g., Figure 1), while respecting
the constraints of the edge devices and the edge network
topology. We target minimizing the latency as our optimization
goal, given that low latency is a requirement of many IoT
applications. We focus on bandwidth constraints, given that
edge devices can have limited bandwidth and/or connectivity.

Existing works have considered different general schedul-
ing algorithms without considering latency for each specific
operator in placement problems. Other works have focused
mostly on minimizing the latency on the specific path that
has the highest latency (i.e., the critical path) – they have
not considered the interaction between all the operators. Prior
work has also looked at optimizing the sum of latencies across
all edge nodes while considering the interactions between the
operators [8]; however, the parallel execution of operators is
not considered. Given that more than one operator can be run
on a given edge node; therefore, the sum of the latencies of
simultaneous operators cannot provide a good model for the
objective function. Thus, in our research, we consider both the
interactions between the operators and the parallel execution
of these operators in the edge nodes.
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Fig. 2. Operator placement depends on the available edge network resources

TABLE I
PARAMETERS

Notation Description
G = (N,O) Problem graph

Ni Edge node i
Oi Operator i
Bin

i Incoming bandwidth in node i
Bout

i Outgoing bandwidth in node i
λini Incoming throughput in node i
λouti Outgoing throughput in node i
λin
(i,j)

Incoming throughput from node j to node i
λout
(i,j)

Outgoing throughput from node i to node j
ωin
i Input data rate in operator i

ωout
i Output data rate in operator i

FT(i,k) Finish time of operator i placed on node k
Ei Minimum number of messages that should be processed

in operator i to produce the output
T(i,k) Time required to run operator i on node k (per message)

II. SYSTEM MODEL AND PROBLEM FORMULATION

We model our problem as a DAG. Figure 2 and Table
I describe some of the parameters that we used in our
modeling. We consider different operator types, according to
the classification in [9]. The diversity of the operator types
led us to consider more features, such as the data dependency
of operators, which can significantly impact the latency, as it
affects the time at which a given set of operators will be able
to execute. We consider data-dependent operators, which must
wait for the data from upstream operators before processing.
For instance, some operators (e.g., aggregation, join) gener-
ate their output by applying a transformation over multiple
incoming data items (e.g., computing a moving average).
Alternatively, data-independent operators can fire whenever
any message is received. Figure 3 shows two sample DAGs
with the data-dependent and data-independent semantics.

III. OBJECTIVE FUNCTION

The objective of our operator placement problem is to
minimize the total latency considering end-to-end latency
between operators while meeting the bandwidth constraints.
At a high level, our model allows us to determine the starting
time (before processing) and ending time (after processing) of
a given operator when deployed onto a specific node, which
then allows us to infer the finish time of the last operator.
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Fig. 3. a) Incoming messages to a data-independent operator b) Incoming
messages to a data-dependent operator

For example, for data-dependent operators (equations 1, 2 and
3), we need to wait and start processing after receiving all
required messages. Therefore, the start time of processing
the first message StartT ime1 is equal to the last message
receiving time from upstream operators. In the equation 2 and
3, variable b indicates a specific message of an operator.

FT(i,k) = EndTimeEi
∀i ∈ O; k ∈ N (1)

where:

EndTimeb = StartT imeb + T(i,k) 1 ≤ b ≤ Ei; (2)

StartT imeb = EndTimeb−1 2 ≤ b ≤ Ei; (3)

IV. CONSTRAINTS

Our model currently considers the bandwidth of the edge
nodes (incoming and outgoing) as the main constraint in our
problem. At a high level, the sum of the required incoming and
outgoing bandwidth for each operator (which depend on the
characteristics of the operator), deployed onto a given node,
must not exceed the available incoming and outgoing band-
width available for that node (equations 4 and 5). Integrating
other constraints is an area of future work.

λoutk ≤ Bout
k ∀k ∈ N (4)

λink ≤ Bin
k ∀k ∈ N (5)

V. EVALUATION STRATEGY

We plan to implement the proposed approach on a test-
bed of IoT devices (e.g., various flavors of Raspberry Pis)
and edge networks, over Apache Storm [3]. We will emulate
network conditions using a tool such as Netem [6], and we
will compare our results with the prior approaches [8], [2].

VI. CONCLUSION

This paper presents a high-level overview of our current re-
search on deploying distributed stream processing operators at
the edge. We aim at reducing the latency in stream processing
and IoT applications while meeting the bandwidth constraints
of the edge devices and networks. In future work, we plan
to work on the scheduling algorithms that can improve the
latency, considering the new proposed objective function.
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