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Abstract

The Internet of Things (IoT) has gained wide popularity both in academic and
industrial contexts. Unlike traditional embedded devices with specialized firmwares,
modern IoT devices accommodate general-purpose operating systems, allowing
developers to runmore sophisticated applications written in high-level languages like
JavaScript.
Because IoT devices are subject to resource constraints like available battery power,
we need to dynamically migrate a running process between different devices to pre-
vent losing state. However, it is challenging to apply migration techniques using
memory snapshots across the heterogeneous pool of IoT devices.
We present ThingsMigrate, a middleware providing platform-independent migration
of JavaScript processes across IoT devices. Prior to execution, ThingsMigrate instru-
ments the source code of a given program to expose its internal state. During run-
time, the transformed program produces on demand a JSON snapshot of its current
state, from which new code is generated to resume execution. Thus, ThingsMigrate
enables process migration entirely in the application space without anymodifications
to the underlying Virtual Machine (VM), providing VM-independence.
We present 3 versions of ThingsMigrate, each building on the previous to opti-
mize for run-time latency and memory consumption. We report on the experience
of building each successive version and discuss the insights gained and the learning
outcomes.
We evaluated ThingsMigrate against standard benchmarks, over two IoT platforms
and a cloud-like environment.We show that it canmigrate even highly CPU-intensive
applications, with average run-time latency overhead of 33% and memory overhead
of 78%. ThingsMigrate supports multiple subsequent migrations without introducing
additional overhead over each subsequent migration.
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1 INTRODUCTION

The Internet of Things (IoT) comprises a diverse range of devices across different domains processing and exchanging data
over the Internet. Over the last few years, the IoT market has grown considerably, with some estimates putting the number of
IoT devices to grow to tens of billions1,2. One of the factors contributing to this growth is the increased programmability of
devices2,3, as more devices – such as the popular Raspberry Pi – are equipped with general-purpose operating systems in contrast
to the traditional embedded devices with specialized firmwares. As a result, developers other than the device manufacturers can
write custom software to run on arbitrary IoT devices and device users can install third-party software, giving rise to a flourishing
software market much like the smartphone app market.

1.1 Motivation
JavaScript is prevalent in IoT. In such a software ecosystem, high-level languages running on a Virtual Machine (VM) – e.g.,
JavaScript, Python – offer many advantages such as greater code portability/reusability and developer productivity, due to the
platform-independent semantics and higher level of abstraction than low-level languages like C or Assembly. In this paper, we
focus on JavaScript as the programming language for IoT applications.
While JavaScript has enjoyed wide popularity in theWeb for a long time, it is now amature and rich general-purpose program-

ming language. JavaScript is one of the most popular languages today (in 2020), and ranks seventh in the TIOBE programming
languages index4. It has also been ranked as the top language on popular open-source development communities such as GitHub
and Stack Overflow for the last eight years.
More recently, it has become more prevalent in the IoT domain5,6 following the widespread adoption of Node.js as a server-

side language. In fact, the use of JavaScript opens the possibility of sharing a common codebase and data formats (e.g., JSON)
across the Web and the IoT software stacks (e.g., the client-side and server-side portions of end-user applications in a Web
of Things (WoT)7 setting could both be written in JavaScript8,9,10). As many IoT devices nowadays provide a browser-based
interface, it is fair to assume that they integrate a JavaScript VM. In fact, there are efforts being made at either adopting existing
JavaScript VMs (e.g., Node.js for IoT devices11), or developing new JavaScript VMs5,6,12,13 for the IoT.
What makes JavaScript particularly attractive in the context of IoT is its single-threaded, asynchronous, and event-driven

execution model. Programming concurrent computations (e.g., Actor model) in JavaScript is fairly straightforward using
continuation-passing style (CPS) patterns, where a closure is passed to a function invocation as a callback. The closure car-
ries the execution context for each chain of function calls, and the programmer does not need to worry about implementing
mutex or semaphores. Furthermore, the asynchronous execution model means that concurrent function calls are interleaved in
the JavaScript event queue, eliminating any sleep time and maximizing CPU utilization. The event-driven paradigm maps well
to the IoT landscape, as sensors can be expressed as event emitters and actuators as event listeners.
To sum up, the programming model and the broad applicability of JavaScript makes it an appealing target language for IoT14.

Popular IoT frameworks such as Samsung SmartThings, Node-RED15, and AWS Greengrass16 have all chosen JavaScript as
one of the main programming languages for userland applications.
IoT applications are becoming stateful.With the growing popularity and programmability of IoT devices, the idea of edge/-

fog computing is making a comeback17,18, where the compute workload is placed near the IoT nodes or on the IoT devices
themselves. The edge computing paradigm offers certain advantages in terms of latency, bandwidth consumption, and some
aspects of security18. We envision running on the IoT devices more complex applications that were traditionally run on the
cloud, which would render better utilization of the resources in the underlying computer network. Consequently, as IoT devices
and applications become more complex, they inherently generate more elements of state (i.e., variables, arrays, objects) dur-
ing run-time. For instance, in an application that detects motion patterns in a video stream (Section 7), elements of state would
include the pixels of the video frames being inspected, as well as any intermediate results produced as part of the computation.
IoT devices are resource-constrained. While general purpose OSes and high-level language VMs may bring programma-

bility to IoT, IoT systems are under different constraints than traditional PC networks or cloud datacenters. For instance, many
IoT devices are battery powered – such as wearables and drones – meaning that they have a finite timespan for doing useful work
and their compute capacity is influenced by the energy available19. Compute resources such as memory and CPU cores are more
scarce than cloud machines, and dynamically provisioning them is challenging in IoT3 due to the heterogeneity of devices and
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their scattered ownership. Predicting resource utilization is also more difficult than in the cloud because many IoT applications
are interfacing with the external environment, making them highly non-deterministic.
Memory-based process migration is unsuitable for IoT. Due to the aforementioned constraints of IoT devices, a great

deal of flexibility is required in scheduling the workloads. In other words, static deployment of IoT applications to devices is
insufficient, and hence there is a need for applications to be migratable. For example, an increase in the computational load or
a decrease in battery level of a given IoT device might require delay-sensitive applications to be migrated to a different device.
We may also need to migrate processes when there are external factors causing device failures (e.g., device gets overheated or
physically damaged), or in the case of cyber-attacks on IoT devices.
In many dependability techniques, process migration is an important building block. At a high-level, it involves capturing the

state of a running process, transferring a snapshot of the process (i.e., an image of the process state), then restoring the process
from the snapshot. The same technique can be used to provide high availability and high resilience to crashes. The most intuitive
and well-known process migration technique is the memory snapshot migration. In this technique, we simply copy the memory
region of the running process to another device that has the same architecture. Unfortunately, such techniques are unsuitable in
IoT due to the high heterogeneity of devices. Different devices have different memory layouts and instruction set architectures,
and hence the snapshot serialization and deserialization steps will have to account for a variety of migration targets. Therefore,
to be able to migrate a process from a device to any arbitrary device, the technique needs to be platform-independent.

1.2 Our Work
Platform-Independent Migration of JavaScript Applications.We overcome the limitations of existing migration techniques
by proposing ThingsMigrate20, a comprehensive middleware for enabling platform-independent migration of stateful JavaScript
applications across arbitrary IoT devices. ThingsMigrate automatically instruments the source code of a given program, injecting
snippets of code into specific locations in the user program to access its internal state. The injected objects enable the system
to capture the logical state of the user program on demand (e.g., via network request or an API call) and produce a platform-
agnostic snapshot. Then, on the target device, new code is generated from the snapshot, which resumes the original program.
No user intervention is required in the migration procedure and the interface is completely transparent to the application.
Other work has attempted to migrate browser-based applications. However, they either do not fully address some impor-

tant JavaScript features – such as nested closures (21) – or they rely on VM-instrumentation22, thereby making their approach
dependent on a specific VM/browser implementation.
To the best of our knowledge, ThingsMigrate is the first comprehensive high-level framework for migrating stateful JavaScript

IoT applications transparently without any user intervention, and without requiring any modifications to the JavaScript VM,
providing platform-independent migration.
In summary, this paper provides the following contributions:

• A comprehensive JavaScript migration approach (Section 5) that is based on high-level code instrumentation and dynamic
code generation, and that does not require VM modification, thereby allowing cross-platform migrations of JavaScript-
based IoT applications.

• System implementation (Section 5.4) that handles many advanced features of the language and environment, such as
arbitrarily nested closures, event queues, timers and MQTT-based communication interfaces, and support for multiple
migrations.

• Optimizing the above migration technique, by using callback functions to lazily capture state, further improving the
responsiveness and memory efficiency of the migration technique.

• Further optimization of the migration technique to mitigate the negative effects of maintaining explicit references to
closure scopes.

• Evaluation through the execution of benchmarks across IoT and cloud-based devices (Section 6). Results indicate that
ThingsMigrate can instrument arbitrary JavaScript programs, serialize their state and reconstruct them within microsec-
onds and with average memory overhead of 90%. Further, ThingsMigrate supports multiple subsequent migrations with
minimal memory usage increase.

• A case study (Section 7) which describes the experience of applying our approach in a real-world IoT context (motion
detection over a video stream), predominantly using third-party libraries developed for server applications.
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1.3 Outline
The rest of this paper is organized as follows:

• Challenges (Section 2) discusses the challenges in migrating a JavaScript process during run-time.

• RelatedWork (Section 3) describes prior research in process migration in general, and similar work in JavaScript process
migration.

• Preliminaries (Section 4) provides an overview of our migration technique, the assumptions we make about the
application domain, a summary of the system architecture, and a formal description of the problem we address.

• Approach (Section 5) elaborates on the three different versions of our migration technique, its limitations, and the
implementation details.

• Experimental Validation (Section 6) describes the experiments we conduct to evaluate our technique and discusses the
observations.

• Case Study (Section 7) presents a case study of using our technique in migrating a video processing application.

• Discussion (Section 8) discusses additional thoughts related to our work, including the equivalency semantics of the three
different approaches and the security impact of our technique.

• Conclusion and Future Work (Section 9) concludes this paper by providing a summary of our work and discussing
future research directions.

2 CHALLENGES

Migrating a running JavaScript program from one VM to another VM running on a different platform architecture poses several
challenges when it comes to capturing and reconstructing the state. To support migration, the current state of the running process
must be captured. As mentioned in Section 1.1, naively dumping the process memory into a byte array and replicating it on
another machine would not work in this heterogeneous setting. Instead, we want to capture the abstract logical state of a running
process. More concretely, in the context of JavaScript, this involves capturing the various objects bound to variables, function
definitions, and – most importantly – closures and their context hierarchy. Once we capture everything needed to represent the
entire process state, we need to serialize it into a platform-agnostic snapshot, and then restore the logical state entirely from the
snapshot. We have identified the following challenges in doing so.
(1) Closures. In JavaScript, extracting an object and its properties is easy, using the standard JSON API (e.g.,

JSON.stringify(foo) where foo is an object). However, there are 2 critical limitations with this approach. The first is in
correctly serializing the static definition of a function. The JSON schema23 does not specify a serialization format for functions,
and the onus is on the user to decide how functions should be serialized. Serializing a function is more involved than serializing
the name of the function and the code in its body; we also need to serialize the lexical context surrounding the function. For
instance, if a function refers to a variable bar that is outside its body, then we have to ensure that the variable bar exists in the
right place when we restore the function so that we do not break the lexical binding of the said variable. The second challenge
is in capturing the dynamic state of the closures created by function invocations and the local variables initialized inside these
closures. This dynamic state is implicit and not visible at the code level. Accessing a closure’s local scope is impossible through
the application layer reflection APIs, as a function’s local variables are not accessible from outside by definition. In fact, this
semantics is fundamental in JavaScript and is what makes closures particularly useful; users can create a self-contained, stateful
function that carries a private execution context. Since the state of closures is fundamentally hidden and cannot be accessed by
an external agent, we need a mechanism to expose these hidden states and make them available for serialization.
(2) Object References. Since JavaScript is untyped and lacks a syntactic representation of object references (e.g., pointers),

we cannot determine statically whether a given variable holds a literal value or a reference. It is important to distinguish between
literal values and references because naively copying references into the snapshot would lead to duplication of objects if there
are multiple references pointing to the same object. For example, consider an object foo with a property bar storing a circular



KUMSEOK JUNG ET AL 5

reference to itself. If we do not check whether foo.bar points to foo itself, we would be recursively copying foo into itself
and the snapshot would grow infinitely. Therefore, the links between various objects and their equality have to be assessed
dynamically and without having access to the internals of the VM.
(3) Event Queue. JavaScript’s execution model is based on an asynchronous event-loop, which repeatedly dequeues handler

functions from the event queue in a FIFO fashion and calls them one after another until the event queue is exhausted. Although
there are built-in APIs to interact with the event queue (e.g., process.nextTick), there is no way to inspect the event queue
itself. Hence, this hidden state of the event queue and the associated event data needs to be exposed in order to restore the control-
flow state of the program. The types of event handlers that need to be captured can be broadly categorized into: (1) timer events,
(2) network events, and (3) file system events. We do not consider the Document Object Model (DOM) and user input events as
typical IoT applications are running on server-side JavaScript VMs, and not in a browser; therefore, they do not have a DOM.
(4) Migration Trigger. As JavaScript is single-threaded, there is no easy way to interrupt the current execution (i.e., yield

control mid-execution) at arbitrary points in time to perform a migration. Furthermore, the call stack is completely invisible to
the JavaScript layer and cannot be accessed or modified without access to the VM’s internals. Therefore, we need to come up
with a mechanism to trigger the migration at certain yield points in the execution of the program.
(5) State Reconstruction.Assuming we have a way to capture the state of a program, restoring the program from a serialized

image poses yet another challenge. A snapshot is a static representation of the dynamic, run-time state of a program. Given a
static image, we have to restore the dynamic state of a program without the ability to directly manipulate the internal state of
a VM – that is, statically through code generation. Restoring the dynamic state through code generation is non-trivial, as we
have to preserve the hierarchy of closures and the implicit references between objects, and without re-executing code that can
potentially lead to side effects.
(6) Multiple Migrations. As a given program might be migrated arbitrarily many times, we need to support multiple migra-

tions. For this to work, the migration mechanism must ensure that the restored program is semantically equivalent – or at the
very least observationally equivalent – to the program before snapshot. If this condition is not met, then the program behaviour
may deviate over multiple hops of migration, which would be incorrect. To ensure that a restored program is equivalent to the
original program, the snapshot and restore procedures have to satisfy the following:
Formal Definition. Let P be the set of all program configurations (dynamic state during run-time) and S be the set of all

serialized process images. We define the snapshot function snapsℎot ∶ P → S and the restore function restore ∶ S → P . Then,
given a program po ∈ P , we have to implement snapsℎot and restore functions in such a way that: restore(snapsℎot(po)) ⇔
pr ⇔ po where pr is the restored program. If we cannot satisfy the relation p ⇔ restore(snapsℎot(p)), the restored program
may exhibit deviant and incorrect behaviour. In other words, snapsℎot and restore should both be bijective functions and thus
inverse of each other. The migration technique must implement the corresponding snapsℎot and restore procedures to make
sure that a given program can survive and remain functionally equivalent over multiple hops of migration.

3 RELATEDWORK

To be clear, we reiterate that our work is about migrating a live JavaScript process during run-time, and not about migrating the
static JavaScript code from one platform to another. Hence, we consider related work in VM migration and process migration,
but not those in file system migration, database migration, or more recently, blockchain migration24.
Migration of JavaScript Applications. There has been significant prior work in the area of migrating JavaScript pro-

grams. However, they focus on migrating web applications between web browsers21,22,25,26, and hence have different constraints
and assumptions than in the context of IoT devices e.g., capturing the DOM state and user input. Consequently, some of
the techniques22,26 require modification to the underlying JavaScript VM to access the hidden application state, making them
platform-dependent.
Imagen21 migrates web applications across heterogeneous browsers without altering the VM, and address some of the chal-

lenges specific to web applications (e.g., the DOM, HTML5 media elements). However, their handling of nested closures is
limited (Section 5.1.1). Further, Imagen allows the application to be migrated just once, as it restores the scope hierarchy by
creating a global dictionary object and the restored code lacks the necessary instrumentation for subsequent migration. The
restored program thus may exhibit the same behavior after a single hop of migration, but its lexical structure is altered, breaking
semantic equivalence.
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ThingsMigrate Imagen21 Kwon et al.22 FlashFreeze27

Application Domain Server Browser Browser Server
Supports DOM Migration X O O X
Supports Migrating Deep Closures O X O O
Supports Multi-hop Migration O X X X
Is Platform-independent O O X O

TABLE 1 Comparison between JavaScript migration techniques. X means that the technique does not support a feature, while
O means it does.

Similar to Imagen, Oh et al.26 propose a migration framework for web applications, with limited support for capturing closure
states. Kwon et. al.22 further extend their work to provide deeper support for serializing and reconstructing nested closures,
though they report a degradation in performance with growing closure depth. Furthermore, they require modifications to the
JavaScript VM to access the internal scope hierarchy, which makes their approach less portable and tied to a specific version of
the open-source Webkit browser.
FlashFreeze27, which claims to be inspired by our previous work20, demonstrates a more performant process migration also

based on code instrumentation. The performance boost comes mostly from capturing the program state lazily. In the code
instrumentation step, they first statically extract the names of the variables captured by a closure, and inject a capture list
generator function for each closure, which they invoke at the time of snapshot to retrieve the captured variables. Similar to
Imagen21, FlashFreeze cannot subsequently migrate a program after restoring it from a snapshot, making it unsuitable for our
target application domain where a program needs to be migrated multiple times.
Table 1 summarizes how prior work in the migration of JavaScript programs compares against ThingsMigrate in terms of the

features supported by each technique or framework. As shown in the table, ThingsMigrate is the only work that supports mul-
tiple hops of migration (i.e., repeated migration), since it preserves the program semantics between migration. ThingsMigrate,
FlashFreeze, and Imagen are platform-independent as they are based on code-instrumentation; though it should be noted that
Imagen is actually implemented by extending Mozilla Rhino28 – a JavaScript VM written in Java – rather than as an integrated
JavaScript module. Kwon et. al.22 requires access to the underlying JavaScript VM and thus is not platform-independent.
Deterministic Replay. As an alternative to capturing and restoring the state of the web application, deterministic replay tech-

niques can be used to replay an exact sequence of actions leading to the current state29,30,31,32,33. However, these approaches focus
on web browser events, and are hence not applicable to IoT environments. Further, they are not practical for IoT environments
that are resource-constrained, as the sequence of events to be captured and replayed grows rapidly over time21.
VM/ContainerMigration. As mentioned in Section 1.1, there has been many attempts at providing low-level migration tech-

niques that directly save and restore the process memory space, and are hence programming language independent34,35,36,37,38.
Recent work in process migration in the mobile/edge/cloud environments39,40,41 also use a memory-snapshot based technique.
Such techniques could be applied for migrating JavaScript programs, but they would require serializing the state of the JavaScript
virtual machine (VM) itself, which can incur significant overheads on IoT devices. Further, as a single VM might host several
IoT components, migrating the entire VMwould migrate all the components. Most importantly, providing platform-independent
migration would not be possible in diverse IoT environments, as even the same version of a given VM might have different in-
memory representations across platforms due to hardware differences. Similar challenges arise in migrating virtualized OSes
across devices42,43, illustrating the limitations of migration techniques based on memory-snapshots. We avoid the challenges
posed by platform differences by leveraging the platform-independent environment provided by the language runtime (in our
case, JavaScript), and by employing code instrumentation in the application layer.

4 PRELIMINARIES

We first present the overall workflow at a high-level, and then detail the assumptions we make, followed by the system model.
We then present a motivating example to illustrate the migration process, followed by the problem statement. In Section 5, we
present 3 different approaches for performing the migration to solve the problem as per this workflow.
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4.1 Overview
The migration process consists of 3 steps:
(1) Code Instrumentation: this step is performed prior to running a given user application, and only needs to be done once for

each application. The main purpose of this step is to expose the hidden states in the program by injecting certain ThingsMigrate
objects into the appropriate locations, which will have access to the hidden objects. Once the code has been instrumented, we
can then access the internal states of the program through the injected ThingsMigrate objects. During this step, we also inject
an event listener that listens for snapshot requests, providing an interface to interact with the program. (Section 5.1.1)
(2) State Extraction and Serialization: this step is triggered by an external entity (i.e., end-user or ThingsMigrate Manager)

through the event listener interface injected during the code instrumentation step. The instrumented application provides access
to all the objects in the program, but these objects are still in their native form inside the VM. To create a snapshot that can
be transported, we have to serialize the objects, the relations between them, and the hierarchy of the scopes in which different
objects reside. We do this by recursively traversing the tree of ThingsMigrate Scope objects (injected in step (1)), serializing
each node along the way, and finally producing a snapshot that represents the tree-like logical state of the program. This snapshot
is then transported to another device where the next step happens (Section 5.1.2).
(3) Code Reconstruction: given a platform-agnostic snapshot, we generate a new program that is equivalent to the program

at the time the snapshot was taken. The reason we have to generate a new program is that we cannot directly control the VM to
create the implicit closure states. Instead, we restore the closure scopes by writing immediately invoked functions in the newly
generated program. We reconstruct the program in such a way that the overall logical structure of the program is unchanged,
and only the data and control flow states are updated; this is crucial for enabling subsequent migrations. The generated program
is then executed as if it were a freshly instrumented program (Section 5.1.3).
Note that steps (1) and (3) can occur anywhere, and not necessarily on the IoT device. In fact, the initial device (where the

application is initially run) can perform all 3 steps and the restored code itself can be transmitted to another device. However,
for efficiency, we perform the instrumentation on a high-performance machine e.g., cloud instance. Code reconstruction is done
by the target device on which the application will be restored. This choice is made for pragmatic reasons.

4.2 Assumptions
We make five assumptions as follows.
ES5 Compliance. To ensure broadest compatibility, we assume that the JavaScript code is compliant with strict-mode ES5

(ECMAScript 2009)44, which has been the de facto standard for many years. Although more recent versions of JavaScript have
been released and are now widely adopted (e.g., ES6/ECMAScript 201545), not all JavaScript engines fully support the newest
features of the language. Supporting programs that use language constructs from newer versions of the ECMAScript standard is
not a significant issue, as support for ES6+ can easily be provided by leveraging transpilers (e.g., Babel.js46) to convert to ES5.
Asynchronous Programming Best Practices.Because JavaScript is event-driven and single-threaded, we assume that devel-

opers will avoid blocking the main thread for long periods of time, as this would prevent the migration from being scheduled.
Note that this assumption is not specific to ThingsMigrate – in fact, a long-running operation that never yields control would
inhibit any asynchronous event (e.g., timers, messages, I/O) from being dispatched. To use ThingsMigrate, developers should
follow the best practices and write their code in an event-driven manner, or break long-running operations to yield control (e.g.,
setImmediate) at periodic intervals.
Use of Publish/Subscribe. We assume that applications use the MQTT.js Publish/Subscribe (Pub/Sub) API for network

communication, instead of the built-in net or httpmodule. Since Pub/Sub is the de-facto communication interface in most IoT
applications47, we believe this assumption is reasonable. That said, our technique is not specific to the Pub/Sub interface, and
can easily be adapted to other mechanisms.
Use of Local File System. We also assume that applications do not perform write operations to the local file system. The

migration of applications writing to local files is challenging. For instance, we have to answer the question of whether to migrate
the file itself to the target device, so that when the application resumes, it is writing to the same file. Alternatively if we decide
not to migrate the file, we have to address how to handle consistency of files distributed across different devices. In this paper,
we only focus on high-level process migration mechanism, and leave these decisions for future work (Section 5.1.4).
Migration support in the VM.While migration support could be implemented in the VM, we believe that this is unlikely in

the near future given the vast heterogeneity in IoT platforms. Unlike in the web browser space where there are only a handful of
dominant players, the IoT landscape is much more fragmented, with the availability of a wide variety of JavaScript engines (e.g.,
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FIGURE 1 Schematic diagram of ThingsMigrate system architecture consisting of 3 components – (1) Instrumentor instruments
each JavaScript program initially to make them migratable, (2) Scheduler determines the appropriate migration target, and the
(3) Migrator coordinates the migration process by issuing commands over the Publish-Subscribe network. Blue lines refer to
the migration operations.

5,6,12,13). Further, migration support would be required at both ends of the migration process; i.e., at the source device/VM, and
at the target device/VM, which may be different from each other. Some of the VMs may be closed-source and hence not easily
modifiable. That being said, should full or partial support for migration be provided in the VM (e.g., by enabling special APIs
to access the state of closures), our technique could be adapted accordingly.

4.3 System Model
To describe the overall workflow and provide some context in which our migration technique would be used, we first present
the underlying system architecture of ThingsMigrate, as illustrated in Figure 1. The system is derived from the architecture of
ThingsJS, a comprehensive IoT middleware that we presented as a vision paper in8.While ThingsJS proposes migration as part
of an integrated system, it does not specifically address migration challenges.We describe the systems components below.

4.3.1 ThingsMigrate Manager
The central piece of our architecture, namely the ThingsMigrate Manager, manages the execution of distributed IoT applications
across the set of available devices. In our model, all communications between the components of the system use the topic-
based Pub/Sub paradigm (MQTT)48. Pub/Sub decouples content producers (publishers) from content consumers (subscribers),
providing a higher-level of abstraction free from the low-level network considerations.
Overall, the Manager has three components:
(1) Scheduler. This component orchestrates the execution of IoT applictions across all devices. For the Scheduler to oper-

ate efficiently, developers are encouraged to modularize their IoT applications into a set of Components, and to follow the best
practices of JavaScript (Section 4.2). Taking into consideration the capabilities of each device, the requirements of the Compo-
nents, and a set of developer-specified constraints, the Scheduler determines the assignment of each Component onto a specific
device. Upon changing conditions, the Scheduler can decide to dynamically migrate some of the Components between devices.
In this paper, we assume that the Scheduler is responsible for initiating a migration; the details of the Scheduler (e.g., scheduling
algorithm, etc.) are outside the scope of this paper.
(2) Instrumentor. This component is in charge of instrumenting the JavaScript source code of the IoT applications, which is

eventually executed by the ThingsMigrate Runtime. The code instrumentation procedure is performed once before running an
application on ThingsMigrate. Most of the apparatus needed to enable migration is bootstrapped at the code instrumentation
stage, and we discuss the work done by the Instrumentor in depth in the following sections – this is our main contribution.
(3) Migrator. The Migrator is in charge of transparently migrating the running application from a source device to the

destination device. To migrate a given Component (e.g., Component regulator1 on device 2), the migrator issues a migrate
command to the ThingsMigrate Runtime running on the source device (Section 4.3.2), specifying the name of the Component
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1 function makeAccount(name, initial){
2 var _balance = initial || 0;
3 return {
4 name: name,
5 balance: function(amount){
6 if (typeof amount === ’number’) _balance += amount;
7 return _balance;
8 },
9 makeTransfer: function(account, amount, repeat){
10 var _count = 0;
11 return function installment(){
12 if (_count < repeat){
13 _balance −= amount;
14 account.balance(amount);
15 _count ++;
16 }
17 console.log(name+’ $’ + _balance + ’, ’ + account.name + ’ $’ + account.balance());
18 }
19 }
20 }
21 }
22 var alice = makeAccount(’Alice’, 100);
23 var bob = makeAccount(’Bob’);
24 var transferOut = alice.makeTransfer(bob, 20, 4);
25 var transferIn = alice.makeTransfer(bob, −10, 6);
26 setInterval(transferOut, 1000);
27 setInterval(transferIn, 1500);

FIGURE 2 Plain JavaScript Code Example

to migrate. The source Runtime returns a snapshot back to theMigrator, which then issues a restore command to the destination
Runtime, passing the snapshot with the command. We only discuss the Migrator’s role in passing in this paper.

4.3.2 ThingsMigrate Runtime
The ThingsMigrate Runtime is a thin JavaScript middleware service that runs on each IoT device and manages the local exe-
cution of all the Components running on the device. It receives the instrumented source code of various Components from the
Instrumentor and executes them, and awaits migration commands from the Migrator over the Pub/Sub interface. Upon receiv-
ing a migrate command for a Component (e.g., for Component regulator1 on device 2), the Runtime first captures the state
of the running program through the ThingsMigrate API injected into the augmented program, then serializes its state (Section
5.1.2) and sends it back to theMigrator over Pub/Sub. Alternatively, when a Runtime (e.g., destination device device1) receives
the serialized snapshot of a Component, it restores the program by generating the appropriate restoration code (Section 5.1.3),
which resumes from the pre-migration state.

4.4 Motivating Example
Figure 2 presents an example JavaScript program that we use throughout this paper as a running example. In lines 1-21, there
is a Function Declaration defining makeAccount, which returns an object with 2 properties – balance and makeTransfer

– each referencing an anonymous function. The 2 anonymous functions (line 5, 9) access the variable _balance declared in
the local scope of makeAccount, and continue to have access to it after makeAccount has returned; thus, both functions are
closures. The closure function balance in line 5 is used as both getter and setter for the "private" variable _balance. It takes
a single argument, adds it to the closed variable _balance if it is a number, and returns the new _balance. If the argument
is not a number, it simply returns _balance. The makeTransfer closure in line 9 is slightly more complex. It creates a local
variable _count and then returns another closure function installment (line 11) that captures it. The variable _count is
used to keep track of how many times installment was called. installment is used to decrement a given amount from the
closed variable _balance and add the same amount to the given account - it can be invoked up to repeat number of times.
In line 22, a new variable alice is declared and initialized by invoking makeAccount, which returns an object containing the 2
closures (balance and makeTransfer). The hidden variable _balance is initialized to 100. While the function makeAccount
has returned, its local variable _balance is still "in-scope" because of the 2 closures referencing it. We simply refer to this
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FIGURE 3 JavaScript Example Closures and Scopes

hidden scope containing the _balance as alice’s scope from now on. In line 23, a similar object is created and assigned to the
variable bob, with a _balance of 0. In line 24, alice.makeTransfer is called to create an installment function, which can
be called up to 4 times, each time transferring an amount of 20 from alice’s _balance to bob’s _balance. This installment
closure is assigned to the variable transferOut. Similarly in line 25, a different installment closure is created and assigned
to the variable transferIn. Finally in line 26 and 27, the native setInterval API is used to schedule the transferOut and
transferIn function to be called every 1 second and 1.5 seconds respectively.
Figure 3 visually illustrates the scopes of the various closures and their relationship. There are two independent copies of

variable _count each defined in their own scope, but only one copy of _balance, which is defined in the parent scope and is
hence shared with the two child scopes.

4.5 Problem Statement
ThingsMigrate captures the hierarchy of scopes, starting from the global scope, as well the data elements (variables and func-
tions) contained within each scope. In other words, ThingsMigrate captures the structure and the values of the different state
elements. More formally, we denote the state of a JavaScript application as S = ⟨S, F , V , R⟩, where S is the set of scopes, F
is the set of functions, V is the set of variables (i.e., a tuple of ⟨name, value⟩) and R is the set of relations between scopes and
other entities (i.e., a tuple of ⟨scope, entity⟩).
Taking the code snippet shown in Figure 2 as an example, and assuming that a snapshot of the state is taken after 3250ms,

there are 2 objects that need to be captured, each representing alice and bob. Each object contains 2 closures referencing a
closed variable _balance. The scope containing _balance and its closure functions should be included in the snapshot. Also
in the global scope are 2 instances of the installment function, each enclosing a variable _count. The installment closures
were returned by the makeTransfer function inside alice’s scope. The resulting state of the snapshot object S = ⟨S, F , V , R⟩
would respectively contain states S, functions and their definition F (omitted for brevity), variables and their value V , and the
set of relationships R between each variable/function and its associated scope:

S ={�0, �1_alice, �1_bob, �3_t1, �3_t2}
F ={makeAccount, �1_alice, �2_alice, �1_bob, �2_bob, installment_t1, installment_t2}
V ={(alice, <Object>), (bob, <Object>), (transferOut, installment_t1), (transferIn, installment_t2)},

{(_balance_alice, 60), (_balance_bob, 40), (_count_t1, 3), (_count_t2, 2)},
R ={(�0, makeAccount), (�0, alice), (�0, bob), (�0, transferOut), (�0, transferIn)},

{(�1_alice, �1_alice), (�1_alice, �2_alice), (�1_alice, _balance_alice)},
{(�1_bob, �1_bob), (�1_bob, �2_bob), (�1_bob, _balance_bob)},
{(�3_t1, installment_t1), (�3_t1, _count_t1), (�3_t2, installment_t2), (�3_t2, _count_t2)}
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TABLE 2 AST Node Reference Table

Abbreviation Name State-changing Example
IDNT Identifier × foo

OBJEXPR Object Expression × { foo: 1 }

FUNCEXPR Function Expression × function(){ }

MEMBEXPR Membership Expression × foo.bar

UNAEXPR Unary Expression × !foo

BINEXPR Binary Expression × foo > bar

LOGICEXPR Logical Expression × foo && bar

UPDTEXPR Update Expression ○ foo ++

ASSGNEXPR Assignment Expression ○ foo = 1

FUNCDECL Function Declaration ○ function foo(){ }

VARDECL Variable Declaration ○ var foo = 1

CALLEXPR Call Expression △ foo()

NEWEXPR New Expression △ new Foo()

RTNSTMT Return Statement △ return foo

×: Does not change state
○: Explicitly updates state
△: Implicitly updates state via scope creation/destruction

Section 5.1.3 (Code Restoration) describes in more detail our algorithmic approach to generating reconstruction code, and
gives an example of the restored code of the same code sample (Figure 2) after migration. As can be observed, the same functions,
scopes and variables, as well as their relationships, are in the restored code sample (Figure 6).
For ease of discussion, we briefly introduce some terminology relating to the JavaScript Abstract Syntax Tree (AST). Table

2 lists the AST nodes relevant to ThingsMigrate, and we will use the abbreviations in column 1 to refer to a certain type of
expression. Column 3 indicates whether the given expression has an effect on the program state during run-time. Expressions like
MEMBEXPR do not alter the state, so we refer to them as no-change expressions. On the other hand, expressions like ASSGNEXPR
directly modify the values of variables, and we refer to them as explicit-change expressions. CALLEXPR and NEWEXPR are
more interesting, since they do not directly update any state variable. However, they create new scopes containing new variables
and change the structure of the internal scope tree; we refer to these nodes as implicit-change expressions.
The next sections describe the algorithmic process followed by ThingsMigrate to (1) instrument the code to expose the hidden

states, (2) take a snapshot and (3) reconstruct the code at the serialized state. As mentioned earlier, we consider three different
techniques to perform the above operations with different tradeoffs in terms of memory and performance.

5 APPROACH

In this section, we discuss 3 approaches for performing JavaScript process migration. We first present our initial approach to
migrating a JavaScript process during run-time, which we label TREECOPY. Based on the lessons gained in the first approach, we
present 2 additional approaches – XPLICTGC and LAZYSNAP – that attempt to optimize the performance overhead of migration.
Finally, we present the details our our implementation.

5.1 Technique 1: "TREECOPY"
5.1.1 Code Instrumentation
In the code instrumentation phase, the ThingsMigrate Runtime augments the input JavaScript source file to allow the state to
be dynamically captured (challenge 1), corresponding to the formal model defined in Section 4.5. Our code instrumentation
approach is inspired by the work by Lo et. al.21, but differs significantly as Lo et. al.21 only offers limited support for capturing
and restoring complex closures. In the example shown in Figure 2, Lo et. al.21 would be able to capture and restore the scope of
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1 Scope {
2 creator: Function // the function that created this scope
3 params: [ (name, value) ] // tuples of parameters the creator was invoked with
4 uid: String // unique id of the scope
5 parent: Scope // the parent scope
6 vars: [ (name, value), ... ] // local variables defined in the scope
7 funcs: [ Function, ... ] // functions created in this scope
8 children: [ Scope, ... ] // child scopes
9 }

FIGURE 4 Scope Object Definition

the two internal installment closures, but would not accurately model the relationship between said scopes in the restored output,
so that two different instances of the makeAccount scope would be generated rather than one, ending with two distinct _balance
variables after restoration. Each nested scope would then update its own _balance variable, which would be inaccurate.
The main aspects of our technique are illustrated in Algorithm 1. The high-level idea behind this approach is to expose the

internals of the logical data structure by injecting additional objects, so that the instrumented programmaintains an explicit copy
of the data used by the program during run-time. In order to fully capture the state of closures, the Instrumentor exposes the
hidden variables by injecting Scope objects into every function, which will store the variables defined locally in its scope, and
then dynamically constructing a scope tree that mirrors the internal scope hierarchy. An abstract representation of the Scope
object is presented in Figure 4.

1 function instrument(code: String) : String
2 ASTroot ← codeToTree(code)
3 ASTroot ← instrumentNode(ASTroot)
4 newCode← treeToCode(ASTroot)
5 return wrapTemplate(newCode)
6 end
7 function instrumentNode(node: ASTNode, parentScope: LexicalScope) : void
8 switch node.type do
9 case FUNCDECL or FUNCEXPR do
10 scope← new LexicalScope(parentScope)
11 foreach childNode in node.body do
12 injection ← instrumentNode(childNode, scope)
13 if injection then
14 node.body.insertAfter(childNode, injection)
15 end
16 end
17 firstLine ← new ASTNode("var " + scope.name + " = new Scope(" + parentScope.name + ")")
18 node.body.unshift(firstLine)
19 injectAfter ← new ASTNode(parentScope.name + ".addFunction(" + node.name + ")")
20 return injectAfter
21 case VARDECL do
22 parentScope.addVariable(node.name, node.value)
23 injectAfter ← new ASTNode(parentScope.name + ".vars." + node.name + " = " + node.name)
24 return injectAfter
25 case ASSGNEXPR do
26 varScope← parentScope.findVariableScope(node.name)
27 injectAfter ← new ASTNode(varScope.name + ".vars." + node.name + " = " + node.name)
28 return injectAfter
29 otherwise do

/* If node has child nodes, call instrumentNode recursively. */

/* Otherwise return. */

30 end
31 end
32 end
33 function wrapTemplate(code: String) : String
34 return "require(’things-js’).bootstrap(function(){" + code + "})"
35 end

Algorithm 1: Code Instrumentation Algorithm (V1)
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Lines 1-6 in Algorithm 1 describe the user-facing API for performing code instrumentation. Note that an end-user does not
need to explicitly call this function, as the ThingsMigrate Runtime automatically invokes it before running the program given by
the user. The instrument function accepts the code string as its only argument, and returns the code string of the instrumented
program. The first step in instrumentation is to construct an Abstract Syntax Tree (AST). We then pass the root node of the AST
to the function instrumentNode, which will traverse the AST recursively and update each node as needed. Lines 7-32 illustrate
the important aspects of the instrumentNode procedure, omitting some of the minor details for clarity. The kind of operation
performed on a node depends on the type of the AST node. If the node currently being processed is a function (i.e., FUNCDECL
or FUNCEXPR), we need to inject a Scope object because a function invocation will implicitly create a new scope, which we
need to expose. For example, when the makeAccount function in Figure 2 is called, a hidden scope will enclose the variable
_balance for that very invocation of the function. In line 10, we first create a new LexicalScope object in order to keep track
of the variables and functions being defined in its scope. It should be noted that the LexicalScope object only tracks the lexical
information during instrumentation and is different from the Scope object in Figure 4, which represents the dynamic scope of a
function during run-time. After instantiating a LexicalScope object, the algorithm proceeds to instrument the function body.
We iterate through the nodes in the function body (lines 11-16) and invoke instrumentNode on each AST node recursively,
some of which return an injection. The injection is a piece of code that is placed immediately after the expression that was
instrumented (line 14). After the body of the function is processed, we inject a line of code that instantiates the appropriate
Scope object at the beginning of the function being instrumented (lines 17-18). Finally, since the function being instrumented
is itself an object belonging to the parent scope, we create a line of code that will add the function to its parent scope (line 19),
and then return it (line 20) as an injection.
Instrumenting a VARDECL node is more straightforward (lines 21-24). We first register the variable with the LexicalScope

object (line 22) so that any other nested nodes referencing the variable can find its enclosing scope. We then inject a line of
code that will update the variable’s value in the corresponding Scope object (lines 23-24). When processing an ASSGNEXPR,
we first look up the lexical scope in which the variable was declared by traversing the chain of LexicalScope objects until
the variable is found (line 26). Subsequently a line of code is injected that will update the variable’s value in the corresponding
Scope object. There are several other types of JavaScript statements that are traversed, but we skip the operational details as they
are immaterial to the instrumentation technique. Once the instrumentNode called on the root node returns, the AST represents
the instrumented version of the program (line 3). We convert the AST back to code (line 4), and then finally return it to the
user-space after wrapping the entire application code in a ThingsMigrate template code (line 5). The template is a small snippet
of glue code that performs bootstrapping work such as importing the ThingsMigrate objects (e.g. Scope) and connecting to the
Pub/Sub service to listen for incoming snapshot commands.
Figure 5 depicts the instrumented version of the original source code shown in Figure 2. The lines of code that are added

during the code instrumentation process are shown in bold. As can be observed, all defined scopes (the global scope, then the
scopes corresponding to each function definition) are mirrored through an instance of a ThingsMigrate Scope object (lines 1,
3, 9, 17, and 21). Furthermore, each variable is copied into the Scope at which it is defined (lines 5, 12, 19, 24, 27, 36, 38, 40,
and 42). Similarly, functions are also registered (lines 8, 16, 20, and 34). To make it easy to identify the anonymous functions,
the Instrumentor simply assigns a unique name to each anonymous function (lines 8, 16).
Instrumenting Timers. Following a similar algorithmic approach as Lo et. al.21, ThingsMigrate provides support for saving

the state of timer functions, namely setInterval and setTimeout (challenge 3). This is accomplished in the instrumentation
phase by replacing the native timer calls with the ThingsMigrate timer API (lines 43, 44 in Figure 5), which expose the state
of the timers such as remaining time until the next invocation of the callback. Consequently, the restored timers resume from
the state it was in when serialization took place. For instance, if we took a snapshot of our example program after 3250ms, then
upon restoration, the first timer (line 43) will trigger its callback after 750ms and then every second, while the second timer (line
44) will trigger after 1250ms and then every 1500ms.
Pub/Sub Interfaces. ThingsMigrate provides support for capturing the state of Pub/Sub interfaces (challenge 3), following

our assumptions (Section 4.2) about the usage of Pub/Sub in IoT. Similar to how we handle timers, ThingsMigrate wraps calls
to the Pub/Sub interface (MQTT library) at the instrumentation phase, so that upon a migration being requested, the list of each
topic previously subscribed by the application gets serialized as part of the snapshot. Then, at the restoration phase, prior to
resuming the execution, a subscription is transparently reestablished to each of the previously subscribed topics. To ensure that
no publications are lost during the migration, we assume that reliable Pub/Sub is provided by the service49,50, so that the latter
can retransmit any missed publication sent during the migration.
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1 var �0 = new Scope();
2 function makeAccount(name, initial){
3 var �1 = new Scope(�0);
4 var _balance = initial || 0;
5 �1.vars._balance = _balance;
6 return {
7 name: name,
8 balance: �1.addFunction(function �1(amount){
9 var �2 = new Scope(�1);
10 if (typeof amount === ’number’){
11 _balance += amount;
12 �1.vars._balance = _balance;
13 }
14 return _balance;
15 }),
16 makeTransfer: �1.addFunction(function �2(account, amount, repeat){
17 var �3 = new Scope(�1);
18 var _count = 0;
19 �3.vars._count = _count;
20 return �3.addFunction(function installment(){
21 var �4 = new Scope(�3);
22 if (_count < repeat){
23 _balance −= amount;
24 �1.vars._balance = _balance;
25 account.balance(amount);
26 _count ++;
27 �3.vars._count = _count;
28 }
29 console.log(name+’ $’ + _balance + ’, ’ + account.name + ’ $’ + account.balance());
30 })
31 })
32 }
33 }
34 �0.addFunction(makeAccount);
35 var alice = makeAccount(’Alice’, 100);
36 �0.vars.alice = alice;
37 var bob = makeAccount(’Bob’);
38 �0.vars.bob = bob;
39 var transferOut = alice.makeTransfer(bob, 20, 4);
40 �0.vars.transferOut = transferOut;
41 var transferIn = alice.makeTransfer(bob, −10, 6);
42 �0.vars.transferIn = transferIn;
43 �0.setInterval(transferOut, 1000);
44 �0.setInterval(transferIn, 1500);

FIGURE 5 JavaScript Code Example - instrumented with V1

Classes and Prototypes. The JavaScript language does not support classes per se unlike object-oriented languages (e.g.,
Java). Instead, it provides high-level abstractions that emulate classes by means of prototypal inheritance51. ThingsMigrate
provides support for serializing JavaScript-like classes by serializing each object’s prototype object, so that upon restoring the
code, the correct prototype chain can be recreated along with the objects.
Cleaning Orphaned Scopes. During the life cycle of a JavaScript application, scopes are dynamically created, and can

sometimes become orphaned. Orphaned scopes are scopes for which there are no single remaining references that point to either
them or one of their child scopes. In the example shown in Figure 2, at each timer iteration (line 26), the scope that is created
on the fly by the transferOut function (first argument) becomes orphaned and is therefore destroyed, as its serialization will
not be required. Therefore, we need to manually destroy the scope objects corresponding to orphaned scopes, as they can lead
to memory leaks otherwise – this problem is exacerbated on multiple migrations (challenge 6).
As a novel contribution, ThingsMigrate provides support for automatically destroying orphaned scopes, to support multiple

migrations (challenge 6) on the same application without increasing the snapshot size and incurring additional overhead in
the restored code (i.e., scope explosion). In the instrumentation phase, the argument of a RTNSTMT is wrapped in an API call
to Scope.maybeDestroy (line 16 of Algorithm 1), for the current Scope object. At execution time, this function will check
whether any other Scope or variable depend on this Scope. If there are no dependent objects, then the scope is destroyed, and
therefore it will not be included in the snapshot (Section 5.1.2).
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5.1.2 Snapshotting and Migrating
To trigger a migration, the component that is being executed receives a migrate command from the Migrator Service through
the Pub/Sub interface. Recall that the code instrumentation phase sets up a listener, which initiates the migration (Section 5.1.1).
Serializing the State. The migration process first involves serializing the state to the JSON format. To do so, the scope

tree is recursively walked in a top-down approach, from the global scope. The serialized output includes, for each scope, the
variables and parameters, as well as nested scopes and functions. In JavaScript, functions cannot be serialized as-is. Thus, upon
encountering a function when walking the scope tree, the function is assigned a unique ID, and the function’s source code is
added to a table of functions, which is appended at the end of the serialized state. Note that the serialized output also contains
the state for special objects that ThingsMigrate addresses, such as timers and Pub/Sub interfaces.
Handling the Stack. We address the challenge of handling the stack (challenge 4) by exploiting the asynchronous, event-

driven nature of JavaScript. Because JavaScript applications are single-threaded and are event-based, the runtime maintains an
event queue.We schedule code migrations as events so that they get pushed at the end of the event queue and get executed over an
empty stack. More precisely, as migration requests are sent through the form of Pub/Sub publications, they are treated as events
and pushed to the event queue. We could also accomplish the same behavior by scheduling the migration as a timer-based event.
Sending the Serialized State. Once the snapshot is generated, it is sent over the Pub/Sub interface to the target IoT node,

which will regenerate the code considering the state of the snapshot, and resume execution.

5.1.3 Code Restoration
Upon a given IoT node receiving a snapshot, it needs to reconstruct the original program at the exact state where migration
took place (challenge 5). The code restoration process must retain the original program structure, while reassigning the values
of logical constructs holding state, such as variables, parameters and closures, without directly restoring the memory regions -
this is important for platform independence and portability.
Reconstructing Closures and Scopes. As in the code instrumentation phase, closures pose unique challenges when it comes

to generating restoration code, as they wrap state elements. Because functions can have return values as functions in JavaScript
(e.g., as seen in line 11 in Figure 2), there can exist multiple instances of the same function, each with its own scope andmaintain-
ing different states (i.e., holding different values in closed variables). The code restoration process needs to instantiate multiple
copies of the same function while preserving the hierarchy of the associated scopes, since closed variable states can not only be
held in its enclosing scope but also anywhere in its ancestor scopes. For instance, in Figure 2, 2 instances of the installment
function are created (i.e., transferOut and transferIn), each capturing the variable _count in its own parent scope created
by 2 separate invocations of the makeTransfer function. These 2 scopes created by the makeTransfer function capture yet
another variable _balance declared in a common parent scope corresponding to the first invocation of the makeAccount func-
tion (bound to the variable alice), but not the second invocation of the same function (bound to the variable bob). Thus, the
reconstructed program should restore accordingly multiple instances of the installment function and their enclosing Scope
objects, multiple instances of the makeTransfer function and their Scopes, and the relationship between the various Scopes.
Code Generation Algorithm. A simplified version of the code generation algorithm is shown in Algorithm 2. The restore

function in line 1 is the user-facing function taking in a single argument snapshot and returning the generated code string. At a
high-level, the program state captured in the snapshot have 2 parts: the scope tree representing the organization of the program’s
data, and the queue of timer events representing the program’s control-flow state. Program restoration involves generating code
to reconstruct the data state (line 2) and the control-flow state (line 3).
In a nutshell, the generateCode traverses the serialized representation of the scope tree and recursively generates code string,

starting from the root (global) scope. Given a scope, the first line of the code generated is the code to initialize the Scope itself
(line 7). In contrast to the code injected during the instrumentation, this restored Scope receives an extra uid argument to re-
assign the same instance ID it had when the snapshot was taken. This ensures that other objects dependent on the scope can
correctly retrieve the same scope instances. Next, the functions (closures) defined in the scope are injected, again wrapped with
the Scope.addFunction call (lines 8-10). Then the local variables of the scope are injected, each initialized with the same value
it had at the time of snapshot (lines 12-19). For some variables during this step, it might happen that the scopes they depend on
have not been reconstructed yet. An example would be a variable storing a closure function, which was originally created by one
of the child scopes. Without generating the child scope first, the closure function cannot exist and therefore cannot be bound to
the said variable. Our approach in TREECOPY addresses these situations by pushing such variables in a queue, to process them at
a later step (i.e., after the generation of the child scopes - lines 20-22). After the first pass through the variables, generateCode
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1 function restore(snapshot: JSON) : String
2 dataCode← generateCode(snapshot.root)
3 timerCode← generateTimers(snapshot.timers)
4 return wrapTemplate(dataCode + timerCode)
5 end
6 function generateCode(scope: JSON) : String
7 code ← "var " + scope.name + " = new Scope(" + scope.parent + ", ’" + scope.uid + "’);"
8 foreach func in scope.funcs do
9 code← code + scope.name + ".addFunction(" + func.toString() + ");"

10 end
11 stage2 ← []
12 foreach variable in scope.vars do
13 if hasDependentScope(variable) then
14 stage2.push(variable)
15 else
16 code← code + "var " + variable.name + " = " + variable.value + ";"
17 code← code + scope.name + "." + variable.name + " = " + variable.name + ";"
18 end
19 end
20 foreach childScope in scope.children do
21 code← code + generateCode(childScope)
22 end
23 foreach variable in stage2 do
24 code← code + "var " + variable.name + " = " + variable.value + ";"
25 code← code + scope.name + "." + variable.name + " = " + variable.name + ";"
26 end
27 return "(function (" + names(scope.params) + "){" + code + "})(" + values(scope.params) + ")"
28 end
29 function generateTimers(timers: Iterable) : String

/* skipped for brevity */

30 end
Algorithm 2: Code Restoration Algorithm

function is called recursively on all child scopes. The last step is to restore the variables that were deferred in the first step (lines
23-26). Finally, before the code generated so far is returned, the entire code is wrapped as a function invocation, with the same
function signature as the original function that created the scope and with the arguments it was invoked with (line 27). This step
ensures that the closures created in the scopes are referencing the correct arguments. When the recursive generateCode call
finally returns from its invocation on the root scope, the returned code string can be called to recreate the scope hierarchy.
We skip the details of generateTimers as they are quite trivial. For example, if a 1000ms setInterval timer has 750ms left,

we first generate a setTimeout call with 750ms and then invoke the setInterval inside the function passed to setTimeout.
Once the code for the scope tree and the timers are available, they are concatenated and then wrapped with the ThingsMigrate

bootstrapping code template in a similar way as in the instrumentation phase (line 4). As a result, the restored code contains the
same set of injected ThingsMigrate objects and can be migrated again in the same fashion.
Code Restoration Example.Assume that a snapshot was taken after executing the code shown in Figure 2 for 3250 millisec-

onds. Figure 6 illustrates the restored code. Note that while this example has been derived from the output of a real invocation of
the code restoration procedure of ThingsMigrate, some simplifications and adjustments were made for clarity. Also, the names
of the various entities within this snippet (i.e., variables, functions, scopes), as well as their relationships, correspond to the state
example shown in Section 4.5.
First we see bob’s scope being created by an invocation of the makeAccount function with the same arguments it was first

called with (lines 4-10). The closed variable _balance is assigned the value 40, which it had at the time of snapshot after 3250
ms of execution. Following the scope generation, the global variable bob is assigned an object with its properties referencing
the closure functions in bob’s scope that was just restored (lines 11-15). A different scope for alice is created, initializing the
variable _balancewith the value 60. In addition, there are 2 child scopes created, each containing the closure installment for
the 2 different invocations of alice.makeTransfer. In the first installment scope (lines 23-28), the closed variable _count
is initialized to 3 (transferOut was called 3 times) and in the second scope (lines 29-34) it is initialized to 2 (transferIn
was called 2 times). The global variable alice is initialized in a similar manner to bob (lines 36-40). The closures bound to
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1 var �0 = new Scope();
2 function makeAccount(name, initial){ /∗ makeAccount function body ∗/ };
3 �0.addFunction(makeAccount);
4 (function makeAccount(name, initial){
5 var �1 = new Scope(�0, ’bob’);
6 �1.addFunction(function �1(amount){ /∗ balance (�1) function body ∗/ });
7 �1.addFunction(function �2(account, amount, repeat){ /∗ makeTransfer (�2) function body ∗/ })
8 var _balance = 40;
9 �1.vars._balance = _balance;
10 })(’Bob’);
11 var bob = {
12 name: ’Bob’,
13 balance: �0.getFunction(’bob.�1’),
14 makeTransfer: �0.getFunction(’bob.�2’)
15 };
16 �0.vars.bob = bob;
17 (function makeAccount(name, initial){
18 var �1 = new Scope(�0, ’alice’);
19 �1.addFunction(function �1(amount){ /∗ balance (�1) function body ∗/ });
20 �1.addFunction(function �2(account, amount, repeat){ /∗ makeTransfer (�2) function body ∗/ })
21 var _balance = 60;
22 �1.vars._balance = _balance;
23 (function �2(account, amount, repeat){
24 var �3 = new Scope(�1, ’t1’);
25 �3.addFunction(function installment(){ /∗ installment function body ∗/ });
26 var _count = 3;
27 �3.vars._count = _count;
28 })(bob, 20, 4);
29 (function �2(account, amount, repeat){
30 var �3 = new Scope(�1, ’t2’);
31 �3.addFunction(function installment(){ /∗ installment function body ∗/ });
32 var _count = 2;
33 �3.vars._count = _count;
34 })(bob, −10, 6);
35 })(’Alice’, 100);
36 var alice = {
37 name: ’Alice’,
38 balance: �0.getFunction(’alice.�1’),
39 makeTransfer: �0.getFunction(’alice.�2’)
40 };
41 �0.vars.alice = alice;
42 var transferOut = �0.getFunction(’alice/t1.installment’);
43 �0.vars.transferOut = transferOut;
44 var transferIn = �0.getFunction(’alice/t2.installment’);
45 �0.vars.transferIn = transferIn;
46 �0.setTimeout(function(){
47 transferOut();
48 �0.setInterval(transferOut, 1000);
49 }, 725);
50 �0.setTimeout(function(){
51 transferIn();
52 �0.setInterval(transferIn, 1500);
53 }, 1250);

FIGURE 6 JavaScript Code Example - instrumented with V1

transferOut and transferIn are retrieved from the reconstructed scope tree (lines 42, 44). Finally, the 2 timer states are
restored to resume execution.
MultipleMigrations.ThingsMigrate supports transparent multiplemigrations without introducing additional overhead (chal-

lenge 6). This is accomplished at the code restoration phase by maintaining a unique scope tree structure that is accessed by
all the generated closures and scopes, and by re-injecting scope definitions (i.e., variables, parameters, nested functions, etc.)
across the regenerated code, following an approach derived from Algorithm 1. Further, relevant Pub/Sub code is re-injected to
support receiving migrate messages again. In other words, the output of the code restoration phase is an alternate code segment
equivalent to the output of the code instrumentation phase, which can hence support further migrations.
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5.1.4 Limitations
Handling External Libraries. ThingsMigrate does not yet provide full support for imported libraries (i.e., the require state-
ment). A simple solution would be to directly import the code in the main JavaScript module itself prior to instrumentation.
This approach may be inefficient however, if there are multiple levels of nested library imports. Another solution would be for
ThingsMigrate to provide a migration interface, and for module developers to implement the interface for either a more opti-
mized migration of the nested libraries, or for supporting libraries exposing native I/O resources, such as file system access.
Despite this limitation, we find that ThingsMigrate can support many third-party libraries as we show in Section 7.
Scope Explosion. If programs make use of several levels of nested closures, then the resulting snapshot and restored code can

become quite large, due to the phenomenon of scope explosion, in which multiple scopes might have to be maintained. However,
this problem is symptomatic of bad programming practices and is not specific to ThingsMigrate, as the JavaScript VM itself
will have to retain a large amount of scope structures in-memory.
Redirecting I/O Operations. As mentioned in Section 4.2, ThingsMigrate assumes that all communications are done over

the Pub/Sub interface. Further, in the current state, ThingsMigrate does not support file I/O operations, which is non-trivial, as
reads and writes must occur where the corresponding files are located. For instance, assume there is a file on device A which
is read by an application on the same device that gets migrated to device B. In order to guarantee consistent reads, we must
guarantee (1) the availability of the file on B, or (2) to provide some redirection mechanism.
As JavaScript I/O operations are typically handled through streams, we plan on transparently redirecting streams over the

Pub/Sub interface (solution 2 above), by wrapping the base JavaScript stream API (similar to wrapping timer-based or Pub/Sub-
based APIs). A stream-level solution can support arbitrary stream-based I/O operations, such as files, network, and even HTTP
requests. Upon device A receiving a migration request to migrate a given app to device B, the ThingsMigrate Runtime will
generate a unique ID for each currently active stream, and will setup a transparent forwarding mechanism over a Pub/Sub bridge
(i.e., by creating a topic corresponding to that ID that both devicesA andB will subscribe to). Then, upon a read operation being
requested by the app on device B, for a given stream, the request will be transparently forwarded by the Runtime to device A,
which will perform the read and send back the results to the Runtime onB, who will deliver them to the stream at the application
layer. Likewise, any write operation will simply be forwarded from the Runtime on B to the Runtime on A.
Nested Timers. Another limitation is the handling of some deeply nested timer-related calls (i.e., setTimeout,

setImmediate). Should a snapshot command be received while a timer is in a pending state – i.e., before the callback func-
tion is invoked – then the timer gets cleared, the remaining time and the reference to the callback function are serialized, and
migration happens normally. However, should the snapshot command be received after the callback function is invoked, then
a race condition occurs between any asynchronous calls made inside the body of the callback and the snapshot function. Race
conditions are sometimes problematic in JavaScript, as the ordering of events is unpredictable52,53. For instance, should the
JavaScript VM event loop process the snapshot function before the asynchronous calls, then the resulting snapshot will not con-
tain the scopes created by the asynchronous calls, producing an incorrect snapshot. Handling nested timers would require that
the snapshot function be delayed until all callbacks have been resolved, which is a non-trivial problem. To address this, we can
inject at the instrumentation phase, specific code into the function scope that will signal the function’s completion, which would
allow us to detect the resolution of nested asynchronous calls.

5.2 Technique 2: "XPLICTGC"
We successfully validated our approach with TREECOPY; however, the instrumented (migration-enabled) programs were con-
suming more than double the memory due to the duplication of state, and were significantly slower because of the additional
work done in tracking the changes in program state. We came up with a new technique (XPLICTGC) to address the following
optimization goals: (1) to reduce the memory footprint, (2) improve run-time performance, (3) reduce the snapshot and code
restoration time to minimize the overall migration latency, and (4) shorten the instrumentation time.
We focus our discussion of XPLICTGC on the code instrumentation phase, as the snapshot and restoration steps remain mostly

the same. In TREECOPY, duplicating the logical program state incurs a significant overhead both in terms of memory usage and
run-time speed. The instrumented program consumes at least twice the amount of memory used by the original program due
to keeping an explicit copy of each variable. The extra code injected for updating the explicit state consumes additional CPU
cycles doing bookkeeping work; the single-threaded nature of JavaScript makes this overhead very apparent.
Keeping a single copy of the state. To address both of the above issues, the first idea was to find a way to work with a

single copy only. Since we need to be able to access every object (including those inside closures) for capturing the program
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1 var �0 = new Scope();
2 function makeAccount(name, initial){
3 var �1 = new Scope(�0);
4 �1.vars._balance = initial || 0;
5 return {
6 name: name,
7 balance: �1.addFunction(function �1(amount){
8 var �2 = new Scope(�1);
9 if (typeof amount === ’number’){
10 �1.vars._balance += amount;
11 }
12 return �1.vars._balance;
13 }),
14 makeTransfer: �1.addFunction(function �2(account, amount, repeat){
15 var �3 = new Scope(�1);
16 �3.vars._count = 0;
17 return �3.addFunction(function installment(){
18 var �4 = new Scope(�3);
19 if (�3.vars._count < repeat){
20 �1.vars._balance −= amount;
21 account.balance(amount);
22 �3.vars._count ++;
23 }
24 console.log(name+’ $’ + �1.vars._balance + ’, ’ + account.name + ’ $’ + account.balance());
25 })
26 })
27 }
28 }
29 �0.addFunction(makeAccount);
30 �0.vars.alice = �0.vars.makeAccount(’Alice’, 100);
31 �0.vars.bob = �0.vars.makeAccount(’Bob’);
32 �0.vars.transferOut = �0.vars.alice.makeTransfer(�0.vars.bob, 20, 4);
33 �0.vars.transferIn = �0.vars.alice.makeTransfer(�0.vars.bob, −10, 6);
34 �0.setInterval(�0.vars.transferOut, 1000);
35 �0.setInterval(�0.vars.transferIn, 1500);

FIGURE 7 JavaScript Code Example - instrumented with V2

state, we decided to keep the explicit copy, and get rid of the original scope tree. This entails the following modifications to the
instrumentation algorithm introduced in TREECOPY:

1. Remove all injected ASSGNEXPR that follow an explicit-change statement (refer to Table 2).

2. Replace all VARDECL with an ASSGNEXPR on the corresponding scope property. For example, var foo = "bar" declared
in scope scope_0 becomes scope_0.vars.foo = "bar".

3. In all statements in the scope, replace IDNT of the original variable with the MEMBEXPR of the corresponding scope
property. For example, all references to foo are replaced with scope_0.vars.foo.

Figure 7 shows the instrumented example program using XPLICTGC. The local variable _balance is an explicit property
in the vars object of the corresponding Scope (�1). Similarly, the variable _count is bound to �3.vars. Additionally, all
the references to _balance and _count are replaced with the respective MEMBEXPR. As a result, the instrumented program
resembles the original program. In a nutshell, we essentially remove all the free variables from the program and turn them into
properties of the enclosing Scope object.
Preserving the lexical semantics. Because we replace all the IDNT with the corresponding MEMBEXPR, more work needs

to be done during the code instrumentation phase. Apart from performing an increased number of AST node modifications, the
Instrumentormust also preserve the lexical semantics of JavaScript. The first issue is that VARDECL and FUNCDECL are hoisted,
while ASSGNEXPR are not. Because hoisted statements are processed before everything else within the execution context even if
they are placed at the end, we cannot naively change a VARDECL to an ASSGNEXPR without inspecting the order of statements
first. Next, the lexical scope of each IDNT needs to be tracked during the instrumentation, since we no longer rely on the native
VM for resolving the lexical bindings. For example, assuming there is an extra global variable _balance in the running example,
the Instrumentor has to track whether a given identifier _balance is referring to the variable in the global scope or to the local
variable inside makeAccount’s scope.
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Handling Garbage Collection (GC). When we implemented the above approach, we found there was a noticeable degra-
dation in terms of memory usage and execution speed. Since we have attached all the state variables explicitly as properties of
scope objects, all the variables created in the program were reachable from the global scope. This meant that no variables were
automatically garbage collected, even if they were no longer used by the program. To make objects available for garbage col-
lection, XPLICTGC had to dereference variables that are no longer needed by the program. Determining which objects can be
safely GC’ed is a difficult problem to solve during run-time, so we instead perform a Mark-and-Sweep periodically to collect
the active scope objects. The scope objects that are not referenced by any of the objects currently in scope are dereferenced and
made available for the native GC. To clarify, this Mark-and-Sweep performed by XPLICTGC is not an actual GC, but a "pre-GC"
to make objects available for the native JavaScript VM’s GC.
Lesson learned. Roughly speaking, what we end up building in this approach is another JavaScript VMwritten in JavaScript.

Instead of relying on the native VM (i.e., Node.js) to handle the lexical binding of variables, the Instrumentor needs to resolve
the binding. In the instrumented program, every variable is accessed via properties of scope objects, which is slower than
accessing via direct references.When there are many transient objects, theMark-and-Sweep is an expensive operation to perform
periodically. In XPLICTGC, the performance gain due to lower memory usage is minimal, and the overall performance degrades.

5.3 Technique 3: "LAZYSNAP"
Although our approach in XPLICTGC was not successful, the experience of building the Mark-and-Sweep mechanism revealed
an important insight: Mark-and-Sweep essentially produces a snapshot of the active program state. Another important insight
– recurrent in various domains of optimizations – is to track the state lazily. The end-goal in our migration problem is simply to
be able to capture the program state on-demand; actively mirroring the state is not necessary. Combining the two insights, we
identified that a more efficient way to achieve this goal would be to invoke Mark-and-Sweep lazily upon a snapshot command
and trace the active scope tree to capture the state (i.e., lazily tracking the state).
Before we discuss further, we briefly describe the Mark-and-sweep GC mechanism used by Node.js V8 engine. This GC

algorithm is the de factoGC used in most modern JS engines. The high-level intuition underlying theMark-and-Sweep algorithm
is to traverse the "links" between the objects in the heap and carve out a graph of reachable objects, starting from the objects
directly accessible from the root scope. The objects that are not included in the graph are unreachable by the program and thus
can be safely garbage collected. Figure 3 illustrates the algorithm54.

1 function markAndSweep(items: Set, marked: Set) : Set
2 foreach item in items do
3 if item ∈ marked then
4 continue
5 else
6 marked ← marked ∪ {item}
7 if item ∉ LITERAL then
8 markAndSweep(getScope(item), marked)
9 markAndSweep(getProperties(item), marked)

10 end
11 end
12 end
13 return marked
14 end
15 reachable ← markAndSweep(rootScope, ∅)
16 unreachable← heap⊕ reachable
17 foreach object in unreachable do
18 delete object
19 end

Algorithm 3:Mark-and-Sweep Algorithm

Lazily capturing the original scope tree.As per our assumptions, we do not have access to the JavaScript VM and its GC, so
we cannot leverage the native Mark-and-Sweep mechanism. Thus, the challenge of accessing enclosed variables still remains, if
we build our own Mark-and-Sweep. To expose the closed variables lazily, we inject a callback function in the variable’s lexical
scope, which we can call later to access the variables. To reiterate, instead of injecting code that actively copies the values of
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1 var �0 = new Scope();
2 �0.extract = function(){
3 return {
4 makeAccount: makeAccount,
5 alice: alice,
6 bob: bob,
7 transfer: transfer
8 }
9 };
10 function makeAccount(name, initial){
11 var �1 = new Scope(�0);
12 �1.extract = function(){
13 return {
14 _balance: _balance
15 }
16 };
17 var _balance = initial || 0;
18 return {
19 name: name,
20 balance: �1.addFunction(function �1(amount){
21 if (typeof amount === ’number’){
22 _balance += amount;
23 }
24 return _balance;
25 }),
26 makeTransfer: �1.addFunction(function �2(account, amount, repeat){
27 var �3 = new Scope(�1);
28 �3.extract = function(){
29 return {
30 _count: _count
31 }
32 };
33 var _count = 0;
34 return �3.addFunction(function installment(){
35 if (_count < repeat){
36 _balance −= amount;
37 account.balance(amount);
38 _count ++;
39 }
40 console.log(name+’ $’ + _balance + ’, ’ + account.name + ’ $’ + account.balance());
41 })
42 })
43 }
44 }
45 var alice = makeAccount(100);
46 var bob = makeAccount();
47 var transferOut = alice.makeTransfer(bob, 20, 4);
48 var transferIn = alice.makeTransfer(bob, −10, 6);
49 �0.setInterval(transferOut, 1000);
50 �0.setInterval(transferIn, 1500);

FIGURE 8 JavaScript Code Example - instrumented with V3

the variables, we inject a callback function, which returns the copy of the variables when invoked. Figure 8 shows the example
code transformed using LAZYSNAP.
In this approach, the callback function resides in the same function body as the variables it is capturing. The lexical binding

of all the variables remain unchanged from the original code, and the callback function inherits the same lexical scope as the
variables. Unless invoked, the injected callback does not interfere with the normal execution of the program and thus introduces
minimal run-time overhead. At any point during the execution, a Scope’s extract callback can be invoked to retrieve its
enclosed variables. With this modification, we have avoided actively tracking the state, and are able to capture all the variables
lazily on demand.
Aligning the lexical scope of injected objects for natural GC. At this point, we have effectively made the migration tech-

nique work lazily. However, the injected objects created during run-time still need to be explicitly dereferenced. The best strategy
would be to avoid having to dereference objects altogether, and let the native GC collect unused objects. To achieve this, the
next step is to organize the injected code in such a way that the life-cycle of the injected objects is aligned with the actual life-
cycle of the enclosing function. That is, if a closure goes out of scope naturally, its corresponding Scope object should too.
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Concretely, we update the definition of the Scope object so that there is only a one-way reference between a parent and a child
Scope. Unlike TREECOPYand XPLICTGC, a parent Scope in LAZYSNAP does not keep references to its children, whereas the
child Scopes can reach the parent. This aligns with the operational semantics of JavaScript– objects in the child scope can refer
to variables declared in the parent scope, while the parent cannot access the closure variables in the child scope. In a similar
fashion, the child Scope has access to the parent Scope, but the parent Scope has no direct link to the child Scopes. After this
modification, if a child Scope is not reachable from the root scope, they are naturally garbage collected; ThingsMigrate does
not need to manage the life-cycle of objects.
On the other hand, without a direct reference from the root Scope, certain descendant Scopes need to be reachable when

capturing a snapshot; we make them reachable via objects currently in scope. A scope is needed only if it is associated with an
object in the reachable program context. So on every non-literal object (e.g., objects, functions), we attach a "private" property
and bind the associated Scope object. Then at the time of snapshot, we can traverse the Scope tree starting from the root, using
our adaptation of Mark-and-Sweep as shown in Algorithm 4.

1 function capture(scope: Scope) : dict
2 if scope.visited then
3 return
4 else
5 scope.visited ← True

6 scope.image ← { refs, children }
7 refs← scope.extract()
8 foreach name, object in refs do
9 scope.image.refs[name]← serialize(object)

10 captureObject(object, scope)
11 end
12 if scope.parent then
13 capture(scope.parent)
14 scope.parent.image.children[scope.id] ← scope.image
15 end
16 scope.visited ← False

17 return scope.image
18 end
19 end
20 function captureObject(object: Object, scope: Scope) : void
21 if isNotLiteral(object) then
22 if isFunction(object) and object._parentScope != scope then
23 capture(object._parentScope)
24 foreach property in object.prototype do
25 captureObject(property, scope)
26 end
27 else if isObject(object) and isDefined(object._scope) then
28 capture(object._scope)
29 end
30 foreach property in properties(object) do
31 captureObject(property, scope)
32 end
33 end
34 end
35 snapshot ← capture(rootScope)

Algorithm 4: LAZYSNAP Snapshot Algorithm

Finally, we also skip instrumenting a function if we can statically determine that it only creates transient state (e.g., pure
functions). That is, if a function does not create any objects and does not return an object other than literals, we can safely assume
that it does not create any closures and therefore need not be tracked. Inside such a function, we do not even inject the Scope
object, and leave the entire function intact.
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5.4 Implementation
ThingsMigrate is implemented in the form of a JavaScript library that can be included by the application. Its implementation is
built over the ThingsJS system, and is part of ThingsJS81. It provides APIs that can be invoked to perform code instrumentation,
snapshotting and code restoration.
From a higher-level perspective, our implementation also provides an execution environment that replicates the architecture

shown in Figure 1. More specifically, it provides a runtime environment that can be run on IoT devices supporting an appro-
priate VM (e.g., Node.js on Raspberry PIs Models 3 and 0), as well as a Manager component, which is used to transparently
instrument JavaScript programs, launch them on specific IoT nodes (decided by a scheduler), monitor them, and trigger a seri-
alization/migration. Internally, our implementation uses the popular esprima library55 to parse JavaScript code into an AST,
and the escodegen56 to convert back an AST into JavaScript code.

6 EXPERIMENTAL VALIDATION

We perform 4 sets of experiments to evaluate ThingsMigrate. Experiment 1 (Section 6.2) measures the performance of our code
instrumentation algorithm against a set of benchmarks. Experiment 2 (Section 6.3) measures the run-time performance overhead
of ThingsMigrate in terms of execution time and memory usage. Experiment 3 (Section 6.4) measures the migration latency
comprising the snapshotting and code generation time. Finally, Experiment 4 (Section 6.5) evaluates the multi-hop migration
capabilities of ThingsMigrate by migrating a benchmark application several times across different devices.

6.1 Experimental Setup
ThingsMigrate provides JavaScript migration between IoT devices, and between devices and the cloud. To emulate different
scenarios, we ran our experiments on two IoT platforms, namely a Raspberry Pi model 3B (quad-core 1.2 Ghz ARM7, 1 GB
memory), and a Raspberry Pi model 0W (single-core 1 Ghz ARM6, 512 MB memory), both running the Raspbian Jessie
operating system (a Debian Linux variant). We also included a cloud server (Xeon E3-1220 v3, quad-core 3.10Ghz, 32 GB
memory). All nodes were running the Node.js VM version 8, which is ES5 compliant. While we did not test other VMs due
to stability issues or due to incompliance with the ES5 standard, each of the Node.js VMs we used were compiled for different
architectures (armv7, armv6, and x86-64 respectively).
Despite an extensive search, we did not find publicly-available sets of IoT-specific JavaScript benchmarks to evaluate our

system. Prior work (14) has built their own IoT-specific JavaScript benchmarks2. We followed a similar approach and built two
IoT-specific benchmarks: (1) a factorial application, which computes the factorial of a very large number and uses closures to
store the computed digits (i.e., in a very large expanding array), and (2), a regulator application, which models an IoT edge
component which receives temperature measurement data from different sensors3 over a Pub/Sub interface, keeps the previous
n values for m sensors, and periodically computes an optimal power adjustment to be sent to an actuator. factorial models a
CPU and memory-intensive application of a finite duration (experiment 2), while regulator models a less intensive (i.e., low
CPU and memory usage) application that runs for a long time. Both applications are stateful, and need to preserve state across
migrations. Note that the memory usage of the regulator is similar to the memory usage of typical IoT-specific benchmarks14.
In addition, for experiments 1 and 2, we also used some benchmarks from the ChromiumOctane57 suite, which were originally

designed to stress-test the performance of the V8 JavaScript engine in the Chrome web browser. They run synchronously and
hence are not representative of IoT applications, but we nevertheless use them to assess the universality of our framework, and
for performance testing of ThingsMigrate under intense workload.

6.2 Experiment 1: Code Instrumentation
In this experiment, we consider all the benchmark programs from the Chromium Octane suite that do not depend on a web
browser (i.e., accessing the DOM or any other in-browser object), as ThingsMigrate migrates IoT applications (i.e., server-side)

1http://www.github.com/DependableSystemsLab/ThingsJS
2The source code is not publicly available, and hence we cannot use them.
3We fed the application with pre-determined values, as the computed result itself is not part of the experiment.

http://www.github.com/DependableSystemsLab/ThingsJS
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(a) Time Taken (Lower is better) (b) Code Size Increase (Lower is better)

FIGURE 9 Code Instrumentation Results (with a confidence interval of 95%)

(a) Time Taken (Lower is better) (b) Code Size Increase (Lower is better)

FIGURE 10 Code Instrumentation Results versus Code Size

rather than in-browser applications. We measure the time it takes to instrument the code for these benchmarks4, as well as for
our factorial and regulator applications. In addition, we compare the size of the instrumented code against the size of the
uninstrumented (raw) code. The set of benchmarks and the set of results of instrumentation using all 3 approaches (TREECOPY,
XPLICTGC, LAZYSNAP) are shown in Table 3 and Table 4.
Figure 9a shows the time taken to instrument each benchmark, normalized to the time taken by TREECOPY. Themain takeaway

of this plot is the significant improvement in the performance of the instrumentation algorithm. As described in Sections 5.2
and 5.3, we inject less code in XPLICTGC and LAZYSNAP compared to TREECOPY where we inject a follow-up expression for
every ASSGNEXPR, which makes it much faster.
Figure 10a shows a lin-log (i.e., log linear) plot of intrumentation time against code size for all 3 approaches. The instru-

mentation time for TREECOPY is noticeably larger than those for XPLICTGC and LAZYSNAP. Approaches XPLICTGC and
LAZYSNAP yield similar results, with LAZYSNAP performing marginally better. We also confirm that the instrumentation time
grows linearly with the code size – i.e., they fit the curve of the form f (x) = ax + b (the plot for TREECOPY is approximated
by the curve f (x) = 2.055 × 10−3x + 56.998, XPLICTGC by the curve f (x) = 0.355 × 10−3x + 0.327, and LAZYSNAP by the
curve f (x) = 0.259 × 10−3 + 0.404). Using the functions, we can estimate that instrumenting a program of 1MB would take

4Measurements were taken on our cloud server.
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(a) cloud Server (Xeon) (b) Raspberry Pi 3 (c) Raspberry Pi 0

FIGURE 11 Normalized Execution Time (Lower is better). Margins of errors were below 1.5% for most of our results, and up
to 6% for some of our results on the Pi 0, for a confidence interval of 95%.

about 263ms using TREECOPY, and about 26ms using LAZYSNAP, which is an order of magnitude faster. Note that even in our
slowest approach (TREECOPY), the instrumentation is performed quite quickly (in under 1 second) for the benchmark applica-
tions. Further, code instrumentation is a one-time process for any given program and can always be performed on a machine
with higher compute capacity, or can be directly integrated as part of the build process, similar to code minification.
The size of the instrumented code relative to the original is shown in figure 9b. In TREECOPY, the median code size increase

is around 700%, while in XPLICTGC and LAZYSNAP the median code size is around 200%. In Figure 10b we provide a lin-log
plot of the size increase as a function of the original code size.

6.3 Experiment 2: Run-time Performance Overhead
In this experiment, we analyze the performance impact of ThingsMigrate over a set of highly resource-intensive benchmarks. The
goal of this experiment is to model the execution of a resource-intensive task of a finite duration (i.e, eventually returns a result)
that would be executed over different IoT devices and the cloud server. For evaluating the 3 techniques, we selected benchmarks
navier-stokes and splay from the Octane suite, as they respectively model extreme conditions in terms of CPU usage and
memory utilization. Further, we were successful in running these benchmarks on all test devices and across all 3 versions of
ThingsMigrate, unlike most other benchmarks in the suite (even without our instrumentation, most of the benchmarks in the
Octane suite were unable to run on the Rapsberry Pi 0 due to its limited capabilities). We also used our factorial application.
For the LAZYSNAP technique, we were able to additionally run richards and raytrace from the Octane suite, as LAZYSNAP
addresses the limitations of the previous versions (e.g., multiple levels of prototypal inheritance).
For each benchmark, we measure and compare the time to complete its execution. On our 3 target devices (Raspberry Pi 3,

Pi 0 and our cloud server), we run (A) the non-instrumented (raw) code, (B) the instrumented code, and (C) the restored code
after migration. As the restored code (C) only runs the second half of the program (the snapshot is taken at the mid-point of
the execution), we also only consider the second half for (A) and (B) for fairness. In addition, we measure the average memory
usage of each of the runs. We perform this experiment for all 3 approaches, and compare the run-time and memory overhead
incurred by each of the approaches.
Execution Time. Results for the execution time of selected benchmarks running on the cloud (Xeon), Pi3, and Pi0 are shown

in Figure 11a, 11b, and 11c respectively. The execution times of the raw version of the benchmarks, represented by the blue
bar, are normalized to 1. The execution time of the instrumented benchmarks using approaches TREECOPY, XPLICTGC, and
LAZYSNAP are shown by the red, yellow, and green bars respectively.
The results for the factorial program clearly illustrates the improvement over the 3 versions of ThingsMigrate. When using

TREECOPY across all 3 devices, factorial slowed down by a factor of about 52% (averaged across 3 devices). XPLICTGC
observes only a marginal improvement. However, in LAZYSNAP the average overhead is reduced to about 27%, where the
overhead on the cloud is 23%.
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(a) cloud Server (Xeon) (b) Raspberry Pi 3 (c) Raspberry Pi 0

FIGURE 12Memory Usage (mb) (Lower is better). Margins of errors are not shown, as the results show the averaged memory
usage for all runs, averaged over the duration of the experiment.

Running navier-stokes exacerbates the flaws of XPLICTGC, as it performs worse than TREECOPY across all 3 plat-
forms. The navier-stokes benchmark mostly calls functions that perform arithmetic operations over several variables and
over elements in a large array. Running a JavaScript profiler shows 90.3% of CPU time is spent on project(u, v, p,

div), vel_step(u, v, u0, v0, dt), advect(b, d, d0, u, v, dt) functions alone, which are all such functions. In
XPLICTGC, all the variables are converted to explicit properties of Scope objects – i.e., IDNT are converted to MEMBEXPRs
– and hence it takes longer to access and update each of the state variables. Furthermore, XPLICTGC’s ad-hoc GC mecha-
nism needs to work diligently to explicitly dereference variables that have gone out-of scope. The execution time overhead of
navier-stokes is brought down to about 3% in LAZYSNAP, as the improved instrumentation algorithm is able to identify
and skip over the functions that do not need to be captured. As a result, only a few functions that generate closure state are
instrumented, with the rest of the program being untouched.
We plot the splay benchmark separately, because it incurred significantly larger overhead in TREECOPY and XPLICTGC.

The splay benchmark creates a splay tree spanning thousands of nodes and rapidly transforms the tree’s structure. Unlike
navier-stokes, it instantiates higher-level objects like SplayTree.Node that contain closure states. When instrumented, each
of the nodes in the splay tree instantiates a ThingsMigrate Scope object, adding to the run-time overhead. TREECOPY and
XPLICTGC experience a much larger average overhead of 8220% and 3870% respectively, since both approaches involve some
form of GC duty (i.e., explicitly dereferencing unused objects via delete). In LAZYSNAP, the overhead is brought down to
67%. The observed difference between the approaches highlight the importance of leveraging the native GC.
In addition to the 3 benchmarks, we were able to run richards and raytrace in LAZYSNAP. In contrast to the other

benchmarks, both richards and raytrace create higher-level objects using prototypal inheritance and the new expression (as
opposed to object literals). TREECOPY and XPLICTGC were not able to correctly restore the program on a target device, due to
their limited support for prototype inheritance. Thus, we report the results for the 2 additional benchmarks, but exclude them
from the overall average, as we cannot compare their results across the different versions of ThingsMigrate.
Despite the large slowdown in TREECOPY and XPLICTGC, all 3 approaches were able to correctly migrate the benchmarks.

We note however that these benchmarks are synchronous programs that were specifically designed to stress-test browsers on
desktop computers, and do not represent typical asynchronous and event-driven applications that run on IoT devices.
We also observe that the performance of the instrumented code (B) and the restored code (C) is the same across all benchmarks

– i.e., time taken for restored program is within the confidence interval of the time taken for instrumented code and vice versa.
As the restored code is semantically equivalent to the original code, we obtain the same performance measurements as the
instrumented (pre-migration) code. These results indicate that the instrumentation overhead does not accumulate and degrade
the performance (i.e., execution time) over subsequent migrations (Section 6.4).
Unfortunately, we cannot directly compare our results with prior work in terms of execution time overhead, as Lo et. al.21

measured such overheads for web applications on desktop computers, which do not exhibit the same workload characteristics
as our benchmarks, and Kwon et. al.22 does not report on the execution time overheads at all.
Memory Usage. Figures 12a, 12b, and 12c present the memory usage of the benchmarks across 3 different platforms. Similar

to the results in Figure 11, the memory usage of the raw benchmarks (shown in blue) are normalized to 1; the red, yellow, and
green bars represent the different versions of ThingsMigrate. For each benchmark, we uniform-randomly sampled the memory
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usage throughout the execution of the benchmark, and report the averagememory usage.We apply uniform random sampling and
not periodic sampling to avoid the sampling interval coinciding with the garbage collection interval, which may render biased
results. Overall, our results reveal that the instrumented programs use considerably more memory than the original program,
ranging from 18% in LAZYSNAP to 940% in XPLICTGC. LAZYSNAP incurs the smallest memory overhead for all benchmarks
and across all platforms.
Since ThingsMigrate is a pure application-level solution that does not involve augmenting the JavaScript VM (unlike Kwon

et. al.22), some memory overhead is unavoidable. For example, every injected Scope object takes up additional space in the
heap. For each benchmark, the observed memory overhead exhibits a different trend, which we attribute to the varying logi-
cal structure of the benchmarks. For factorial, the memory overhead is reduced over each version of ThingsMigrate, with
LAZYSNAP incurring the least memory overhead of 77%. Interestingly, the average memory overhead for navier-stokes is
higher by 48% in XPLICTGC than in TREECOPY. In factorial, there are only a few Scope objects while the captured object
is large (i.e., a large array of numbers). In this program, the size of the program state dominates the memory usage. However in
navier-stokes, the program state consists of a smaller array and a few literal values, while there are a lot of Scope objects
created by transient function calls. In such programs, the creation of Scope objects dominates the memory usage. This is why we
see higher memory usage in XPLICTGC even without keeping a replica of the program state. LAZYSNAP does not incur memory
overhead for tracking the program state, since it captures the program state lazily. Rather, the memory overhead in LAZYSNAP
comes from the injected Scope objects and the associated extract callback functions. The results for splay also illustrates the
improvement over the 3 approaches, with the lowest overhead of 42% in LAZYSNAP. Surprisingly, the overhead introduced by
XPLICTGC is larger than TREECOPY on the cloud machine, but not on the other 2 devices. A potential explanation for this is the
interaction between the garbage collection cycle and the memory sampling code. As we measure the resource usage from within
the application, the sampling function is also pushed into the JavaScript VM’s event queue. Hence, we know that the sampling
function can only be invoked when the synchronous part of the benchmark has finished. During the synchronous part of splay,
thousands of Scope objects are created, consuming a lot of memory. On the cloud device, the next synchronous part of splay
can be queued right away, as there is still gigabytes of memory left. In contrast, on the Raspberry Pi devices, the VM invokes
garbage collection more aggressively, to clean up the unused Scope objects and make room for the next function invocation.
Therefore, there is a higher chance on the Raspberry Pi devices that the memory sampling function is invoked after the garbage
collector has freed up memory. The memory logs support this explanation, in which the memory consumption for Raspberry
Pis drops at regular interval, while the pattern observed on the cloud is more arbitrary.
In addition to the Scope objects injected throughout the user code, there are other ThingsMigrate objects initialized during

the bootstrapping step (Section 5.1.1) that perform logistical work unrelated to the application logic such as maintaining an
MQTT Pub/Sub connection. Thus, we further break down the overall memory usage into 2 parts: 1 memory used for tracking
the program state, and 2 memory used by helper objects providing the Pub/Sub interface for triggering the migration. Part 1 is
the unavoidable overhead in any implementation of ThingsMigrate; Scope objects are injected regardless of how the migration
is triggered and how the snapshot is transported. Part 2 is the variable overhead and is mainly due to our choice of the MQTT
Pub/Sub infrastructure for triggering the migration process. We therefore subtract the latter from the total memory overhead.
We measured the overhead of part 2 by executing an "empty" benchmark that performs no computation, and found it to be
about 19MB for 64-bit devices and 9.5MB for 32-bit devices. We note that the absolute memory usage for both Raspberry Pi
devices are half of that of the cloud server due to the bitness of the devices; i.e., our cloud server has a 64 bit processor, while
the other Pi devices have 32 bit processors. Further, GC is triggered more aggressively on the Pi devices, as they are more
memory-constrained.

6.4 Experiment 3: Migration Overhead
In this experiment, we report the migration overhead consisting of the time taken to capture and serialize the state, and the time
taken to generate restoration code. We ran each benchmark until it made 50% progress, took a snapshot, and then generated
restoration code from the snapshot. As we noted previously, as the benchmarks were synchronous programs (i.e., do not yield
control to the migration framework), we manually injected code to trigger the migration from within the benchmark; this also
has the effect of migration being triggered deterministically at the desired point in the execution. Each benchmark was captured
and restored multiple times on each platform, and the times averaged over the multiple runs are displayed in Figure 13.
Similar to the results of Experiment 6.2, we observe that XPLICTGC and LAZYSNAP both perform significantly better than

TREECOPY, mostly due to the improved implementation of the Instrumentor and Runtime. An interesting observation regarding
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(a) cloud Server (Xeon) (b) Raspberry Pi 3 (c) Raspberry Pi 0

FIGURE 13 Snapshot / Restoration Time (in seconds). Margins of error were between 0.5% and 5% for all results, for a
confidence interval of 95%. (TC = TREECOPY, XG = XPLICTGC, LS = LAZYSNAP)
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FIGURE 14Multi-Hop Migration Analysis (regulator application)

the navier-stokes benchmark is that LAZYSNAP takes slightly longer than XPLICTGC because the snapshot step for LAZYS-
NAP takes more time. In XPLICTGC, the scope tree is explicit and thus always readily available for capture. If there are not many
unused scopes in the program, the explicit GC procedure takes minimal time and the scope tree can be captured immediately. In
LAZYSNAP, the scope tree is captured lazily, so a Mark-and-Sweep procedure is invoked to traverse and collect the active states,
only upon a snapshot command. The results for splay bring out the opposite effect, in which XPLICTGC has to perform a lot
of work to dereference the unused scopes before producing a snapshot. In LAZYSNAP, the unused scopes are left for the native
GC, and the Mark-and-Sweep procedure simply captures the active scopes. The migration latency of LAZYSNAP on even the
most constrained device (Raspberry Pi 0) is still quite reasonable (77ms for splay).

6.5 Experiment 4: Multiple Migrations
In this experiment, we analyze the global behavior and performance of ThingsMigrate over time, when multiple migrations are
performed between the edge and the cloud. More precisely, we analyze the effects of migrating a long-running asynchronous
service that is not computationally expensive from one device to another. None of the benchmarks used in Experiment 2 fit
this description, nor could we find publicly available JavaScript-based IoT benchmarks that satisfy this criteria (Section 6.1).
Therefore, we developed and used our own benchmark – the regulator application that satisfies this criteria (by design). We first
deploy the regulator application on our cloud server, then we migrate it to the edge devices (i.e., the Raspberry Pi 3 device, after
one minute, and then to the Pi 0 device, after one minute). The application is then pushed back to the cloud server. This cycle
is repeated 10 times (30 migrations over 30 minutes), and the CPU and memory utilization are measured in each instance.
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The memory utilization results are shown in Figure 14, for the duration of the experiment (30 min). The migration cycles
are denoted by a vertical bar (every 1 minute), and an oscillating variation pattern can be observed during the time periods for
which each device was executing the regulator application. As can be observed, the memory usage fluctuates, for all devices, but
remains overall stable, as each successive code restoration does not consume additional memory (assuming the memory needs
of the application do not increase). The step-like appearance of the memory curves are explained by the JavaScript garbage
collector (GC), which regularly claims small amounts of memory (i.e., during execution of the regulator – small pikes), and
which periodically runs a more through collection (bigger drops). However, we also observe that the memory tends to very
slowly increase over time, but this is not due to the multiple migrations – rather, this is an artifact of the experimental data
collection process, which logs memory and CPU usage at a frequent interval (every 200ms) and keeps the data in memory. This
is supported by Figure 15, which plots the snapshot size at each successive migration, which remains constant at 83kb. Finally,
as in Experiment 2 (Section 6.3), the memory usage on the cloud server is higher than on the Pi devices.
The CPU usage is shown on the same Figure (14). For simplicity, we show CPU usage results only for one device (i.e., Pi

0, which is the most resource constrained), but the trend is similar on the others. As can be observed, the CPU usage peaks at
about 4%-5% when the Pi 0 device is executing the application, and is close to 0% otherwise. The CPU usage during run-time
remains constant across the different executions. The short spike before migration corresponds to the code reconstruction, and
the short spike after migration corresponds to the serialization process, for which a small memory surge can also be observed.

6.6 Summary
Overall, our results demonstrate that ThingsMigrate can enable the cross-platform migration of IoT JavaScript-based appli-
cations with acceptable performance overhead and without any modifications to the underlying VM. The run-time latency
overhead using LAZYSNAP was 1.6% in the best case, and around 25% for control-yielding benchmark (factorial). Even for the
compute-intensive, thread-blocking benchmarks from the Octane Suite, which are not representative of typical IoT workloads,
ThingsMigrate was able to migrate them despite a higher run-time overhead. The memory overheads were more significant,
ranging from 19% to 252%, though we believe that this is an acceptable tradeoff, given our approach to provide migration support
purely at the application-level through code instrumentation.
Starting from the state-replication approach in TREECOPY, we explored the effects of different optimization techniques on

the performance of the user application. XPLICTGC faired poorly in term of run-time overhead, despite a marginal reduction in
memory consumption. This was mostly due to the explicit dereferencing of variables that have gone out-of-scope. In LAZYSNAP,
we cut down memory consumption to nearly 1/3 of TREECOPY, by not keeping a replica of the internal state. We also saw a
significant reduction in run-time overhead due to capturing the state lazily. Finally, our results show that ThingsMigrate can
support multiple-hops of subsequent migration without altering the application semantics, while keeping the CPU and memory
usage constant throughout and not adding any overhead over the migration cycle.

7 CASE STUDY: MOTION DETECTOR

In this section, we describe our experience with using ThingsMigrate to build a realistic IoT application for video surveillance
by adapting third-party JavaScript components developed for standalone Node.js applications. There is a strong motivation for
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FIGURE 16 Case study setup

processing video streams at the edge58,59, as sending live streams to the cloud for processing in real-time might not always be
efficient or possible. The components that we adapted were not designed with ThingsMigrate in mind, and as a result, we had
to make (minor) modifications to make them work with our system. We also evaluate this application using application-specific
metrics, rather than CPU/memory usage (unlike Section 6).

7.1 Experimental Setup
We set up an IoT network with four devices to build a surveillance system. Figure 16 shows the setup. We have used the
TREECOPY technique for this case study, as the focus of the experiment was not on optimal performance but to understand how
ThingsMigrate can integrate with a real-world application. The workflow for integrating XPLICTGC and LAZYSNAP remain the
same.
The application logic is modularized into two components: a video streamer component that captures images from a video

source such as a webcam, and amotion detector component that processes the images to detect motion. Unlike the video streamer,
which is bound to a single device by the peripheral from which it needs to capture video, the motion detector can be run on any
device as it performs computations on the image data. We measured the behavior of the system over a series of migrations of
the motion detector across the three systems (Raspberry Pi 3, Pi 0, and the cloud server from Section 6).
Video-streamer: We used FFmpeg60, a popular open-source software for handling multimedia, to capture individual frames

from a video stream. For the purpose of the experiment, the component was configured to stream from a video file instead of a
peripheral such as a webcam, so that we have a deterministic and reproducible sequence of frames. To interface with the FFmpeg
process from the JavaScript layer, we adapted a third-party NPM library called fluent-ffmpeg61, which we use to capture
individual frames. We then publish them over the Pub/Sub interface. The capture-and-publish routine was written as a single
JavaScript function captureFrame that was passed into a setInterval call with interval set to 200ms (i.e., a rate of 5 frames
per second). We used the cloud server to serve as a surveillance camera and run the video streamer component.
Motion Detector: This component was written entirely in JavaScript without having to interface with any external software.

We integrated a third-party NPM module called jimp62, which provides an API to read Buffer objects (i.e., received from the
Pub/Sub overlay) and perform image processing tasks. The component stores binary frame data for the n latest frames.
The motion detection logic (i.e., function detectMotion) iterates through the array of images and computes the difference

between subsequent frames by calling jimp.diff(). The binary difference between the frames is published over the Pub/Sub
interface. In addition, if more than 10% of the pixels are altered, an alert message is also published under a different topic. The
detectMotion function is passed to a setInterval call with the interval set to 500ms - this is lower than the frame rate of
the video streamer (Section 7.2 explains why). Since the detectMotion works by retrospective inspection of past frames, the
array of Buffer objects containing the image data needs to be migrated. Otherwise, the restored component would need to wait
for the buffer of past frames to be filled again – thereby skipping the motion detection process for a given time window, and
missing potentially important motion.
Although we do not fully support the migration of external libraries (Section 5.1.4), it was possible to integrate the third-party

NPM libraries as the objects they created were native JavaScript objects and the API calls were limited to stateless operations.
For instance, since the Buffer objects are native objects, they could be easily serialized and migrated. The function call to
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FIGURE 17 CPU Usage over time – Motion Detector component

jimp.diff() is a stateless operation, since it does not create any additional scopes and its execution context is destroyed after
it returns. Such stateless operations do not affect the migration process because we do not need to serialize their scopes.
Finally, we collected performance statistics by subscribing to a Pub/Sub topic at which each ThingsMigrate runtime publishes

its CPU and memory usage. To monitor and verify that the motion detection was working correctly, we used the ThingsJS web
dashboard, which displays the images by converting the data into a base64 encoded PNG image.

7.2 Results
To automate our migration test in a controlled fashion, we wrote a Node.js script, using the ThingsMigrate Migrator to send
commands to the IoT devices over the Pub/Sub interface. We sent a migrate command every 1 minute to the cloud Server, Pi
3, and Pi 0, in that order, and back. We repeated the cycle 3 times.
Figure 17 shows the CPU usage over time as the application is migrated between the devices. The collected data for CPU and

memory usage across the three devices exhibit a similar pattern to the regulator component discussed in Section 6.4. The CPU
usage on a device has a spike upon receiving a snapshot and just before sending a snapshot, remains high while it is running
a component, and stays near 0 during the idle state. The memory consumption stays within a narrow range, with the garbage
collector being triggered more frequently while a device is running a component, and only occasionally while it is idle.
However, on the Raspberry Pi 0’s console, we observed error messages showing that the process failed at regular intervals.

This is because the asynchronous call to detectMotion took much longer than the set interval of 500ms, due to the limited
computational capacity of the Pi0, which led to the event queue filling up faster than the JavaScript VM could consume, which
eventually led to overflowing and halting of the program.
Figure 18 shows the frame rate measured in Frames Per Second (FPS) on each device over time. The FPS was calculated using

the formula 1
Δt

where Δt is the time taken to execute the detectMotion function. The figure shows the FPS dropping below
the required FPS of 2 over the periods between 120 and 180, 300 and 360, and 480 and 540 seconds, during which the Pi 0 was
running the motion detector component. We can also observe the detectMotion function blocking the thread at 180 seconds
and 360 seconds, preventing the migration from being triggered. The FPS drops below 2 occasionally during Pi 3’s execution,
but for most frames it is able to process within the time interval, compensating for the delay overall.
In summary, we were able to successfully migrate a third-party application with minimal modifications between different

devices. We also found the frame rate measured in FPS was acceptable in most cases for the application.

8 DISCUSSION

Equivalency of 3 versions. Since we instrument the original code and transform the program, we technically change the
semantics of the program. From an operational semantics perspective, the instrumented program is not strictly equivalent (e.g.,
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FIGURE 18 FPS over time – Motion Detector component

alpha-equivalent) to the original. That said, we use the relaxed notion of observational equivalence, where we claim that 2 pro-
grams are equivalent if their observable outputs are indistinguishable. This is a practical and acceptable notion of equivalence
in the context of real-world usage, as evidenced by the use of regression tests over a software life-cycle63,64,65.
Based on this reasoning, we verify the safety of our instrumentation by observing the behaviour of the instrumented program

and comparing it against the behaviour of the original program using a set of unit tests and micro-benchmarks. For example, to
verify that we do not break the closure semantics, we test a minimal program that defines a single closure function foo()

containing a local variable x initialized with an arbitrary value, then try to print the value of x from the global scope – a correctly
transformed program should print undefined. We use a set of such minimal programs and more complex programs (e.g., nested
closures, multiple instances of closures) to test each of the JavaScript semantics, ranging from simple variable assignment and
loops to prototypal inheritance. These tests also help us assess the completeness of our instrumentation, as failed tests reveal the
JavaScript features we do not support. Using this rubric, LAZYSNAP is the most complete approach, followed by TREECOPY,
which does not fully support migrating prototypes. As we have mentioned, XPLICTGC actually breaks the closure semantics
when dealing with multiple nested closures. However, we have not pursued to correct XPLICTGC as we have abandoned the
approach after discovering its relatively poor performance.
Security Impact. We examine the security impact of transforming a program, since the instrumented program exposes to

ThingsMigrate the closed variables, which otherwise would be hidden to a third-party script running in the same VM. Firstly, we
assume that the user (or a group of trusted users such as a company) has control over the host platform on which ThingsMigrate
Runtimes run, and that the process snapshot is transfered over the Internet. This assumption applies to most Web services, as the
service providers either own the host machines or rent VMs from trusted parties, and data is transferred between servers over the
Internet. Given this assumption, we claim that the attack surface of ThingsMigrate is fundamentally no larger than an ordinary
Web service; it is secure as long as we apply the standard Web security practices of encrypting communication channels and
protecting the hosts66,67,68.
There are 2 attack vectors through which a closed variable can be leaked: 1) snapshot image, and 2) a third-party script. The

first attack vector is straightforward – the snapshot contains the values of all the variables and it is transferred over the network.
Thus, to preserve the confidentiality of the snapshot, we must ensure that the communication is secure via end-to-end encryption
between the ThingsMigrate Runtimes. While we have not secured the communication channels in our implementation, it is
trivial to do so – because we control both communication endpoints – by leveraging existing solutions such as TLS. As per the
second attack vector (via third-party script), we first summarize ThingsMigrate’s operation: ThingsMigrate itself is written as a
JavaScript program that runs inside a VM like Node.js, exposes a user interface at a public-facing network port through which
a user sends code to execute, and instruments and executes a given program upon user request. At the user interface, we must
ensure that the user is trusted and the communication channel between the user and ThingsMigrate is secure. While we do not
address this aspect in our implementation, it can easily be addressed by using existing Web security solutions such as standard
authentication, OAuth, or PKI (SSL certificates). This provides the bare minimal protection from a technical standpoint, but the
system is still vulnerable from authenticated users with malicious intent – i.e., compromised clients. For example, an honest
user’s program could be vulnerable to a program sent by a malicious user, similarly to a cross-site scripting attack. TREECOPY
was vulnerable to this attack, as the closed variables are directly reachable from a global object and the user programs were run
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in the same process space. In LAZYSNAP, this attack is more difficult, firstly because we do not expose closed variables in the
global scope, and secondly because each program is run as a child process of the ThingsMigrate Runtime, and thus is isolated
from each other. The only channel a malicious program has to another program is through the ThingsMigrate API – by invoking
the snapshot function and receiving the snapshot. The current implementation of ThingsMigrate is vulnerable to this particular
attack, but we can defend against it by implementing permission control. For example, each program would have an owner, and
migration control would be permitted only by the owner. Albeit the lack of implementation, the defense we have described –
such as using TLS, authentication, and permission control – are standard practice in Web-based systems, and hence we claim
that ThingsMigrate is on par with ordinary Web services in terms of security.
Algorithmic Complexity. In terms of algorithmic complexity, we first point out that the input instance is the user program

and its size is simply the size of the JavaScript code in UTF8. The algorithm can be broken down into 3 phases: parsing phase,
AST modification phase, and code generation phase. The algorithmic complexity of the parsing phase is O(n), as JavaScript’s
lexical grammar is Left-to-Right (LR)45 and the parser is essentially a single-pass stream operator over a text stream. We use the
esprima parser55 whose algorithmic complexity is undocumented, but we assumeO(n)which is typical of LR parsers69,70. After
parsing, ThingsMigrate modifies the relevant AST nodes by recursively processing the tree starting from the root. TREECOPY
and XPLICTGC were not context-free, as they had to track each variable name by looking up the surrounding nodes to determine
the name’s lexical scope. In the worst case, the algorithmic complexity would beO(n2), as the whole tree could be looked up for
each node. However, LAZYSNAP modifies the AST in a nearly context-free manner; it builds the local context of each function
expression as it traverses its body, and then injects a new node as it exits the node. Thus, the modification phase also completes in
O(n). Finally, the code generation phase is the reverse process of parsing, and it also completes in O(n); we use the escodegen
library56. Overall, the algorithmic complexity of ThingsMigrate’s code instrumentation is thereforeO(n). We also observed this
experimentally in Figure 9a.

9 CONCLUSION AND FUTUREWORK

In this paper, we presented ThingsMigrate, an approach that enables platform-independent migration of stateful JavaScript
processes across diverse IoT devices. ThingsMigrate transparently instruments the application code before executing it, injecting
application-level objects that expose the hidden states of a JavaScript program such as local variables captured inside closures.
Additional event listeners are injected into the instrumented program to provide an interface for serializing the program state into
a snapshot during run-time. Given a platform-agnostic representation (i.e., JSON snapshot) of the process state, ThingsMigrate
generates code that restores the state of the program and resumes execution. Further, ThingsMigrate enables multiple subsequent
migrations by formulating the snapshot procedure and restoration procedure as inverses of each other, to ensure that the program
before capture and after restoration are semantically equivalent. ThingsMigrate is purely an application-level technique relying
only on the semantics of the language, and requires neither any modification to the underlying VM nor the platform.
We presented 3 different versions of ThingsMigrate, each with different tradeoffs. In the first TREECOPY approach, we main-

tain an explicit replica of the program state by copying any state variables into the injected Scope objects. In an attempt to reduce
the memory footprint, we carry out a more invasive program transformation in XPLICTGC, in which we convert all lexically-
scoped variables into explicit properties of Scope objects. Consequently, we face additional difficulties having to explicitly
dereference out-of-scope variables, which eventually degrades performance during run-time. Combining the learning outcomes
from TREECOPY and XPLICTGC, we devise an optimized technique in LAZYSNAP, where we avoid both keeping an explicit
replica of the state and managing the Scope life-cycle. LAZYSNAP introduces minimal run-time overhead by capturing the state
lazily via callbacks, and by aligning its Scope hierarchy with the original program’s scope hierarchy, thus delegating to the
native GC the management of the Scope life-cycle.
We evaluated each version of ThingsMigrate on three different devices (IoT and cloud), using both Chrome Octane bench-

marks and custom benchmarks. The results show that ThingsMigrate can instrument user programs within microseconds on a
cloud device, and migrate processes (i.e., capture snapshot and generate restored program) between devices within reasonable
time bounds. ThingsMigrate imposes an average of 33% execution time overhead during run-time for non-blocking IoT appli-
cations, which is reasonable, and does not lead to significant slowdown. Finally, we show that ThingsMigrate supports multiple
subsequent migrations across heterogeneous devices without incurring additional overheads.
As future work, we intend on improving support for more complex cases of classes and prototypes, as well as supporting the

features of the newer ECMA standards out-of-the-box (i.e., without the use of a transpiler). We would also like to accomplish
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migration without interrupting the execution flow (i.e., seamless migration). Other potential extensions could be to adapt our
approach to provide fault tolerance in an IoT setting, or providing application replication onto several devices, for increased
performance and dependability.
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